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1. DEFINITION OF ODE

DEFINITION 1.1. Let D ⊂ Rn be a domain, i.e., an open connected set.
(i) A time-dependent vector field on D is a pair consisting of a domain V ⊂ D × R together

with a continuous map F : V → Rn.
(ii) The time-dependent vector field F is said to be autonomous (or one simply omits the

adjective time-dependent) if V = D × R and for each x ∈ D, F (x, ·) is constant. That is
to say, a vector field on D is a continuous map ξ : D → Rn. (In particular, ξ(x) = F (x, t)
for all (x, t) ∈ D × R.) �

REMARK 1.2. In principal, the above definition can be made for more general measurable vector
fields. However, since for a given vector field we will be seeking a measurable function that we
will compose with the vector field in question, continuity is a natural assumption. �

Vector fields are the data of ordinary differential equations (ODE). From this data, we want to
extract so-called integral curves, which we now define.

DEFINITION 1.3. Let F be a time-dependent vector field on a domain V ⊂ D × R. An integral
curve through x ∈ D with initial time s is an open set I(x,s) ⊂ R containing s, together with a
differentiable curve γ(x,s) : I(x,s) → D, such that

(i) γ(x,s)(s) = x,
(ii) (γ(x,s)(t), t) ∈ V for all t ∈ I(x,s), and

(iii) one has
dγ(x,s)(t)

dt
= F (γ(x,s)(t), t).

The central question of ODE is whether, for a given vector field, integral curves exist and, if
so, are unique. This question is partially answered in Section 3, after we establish, in Section 2, a
simple fact about contraction mappings.

2. CONTRACTION MAPPINGS

In the proof of the existence and uniqueness theorem to be stated in the next section, we will
need to make use of an iteration scheme due to Picard. The convergence of this iteration scheme
depends on the concept of contraction mapping, which we now define.

DEFINITION 2.1. Let A ⊂ X be a subset of a metric space. A mapping S : A→ A is said to be a
contraction mapping if there exists some r ∈ (0, 1) such that

d(Sx, Sy) ≤ r · d(x, y)

for all x, y ∈ X . �
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The basic fact about contraction mappings is the following result.

PROPOSITION 2.2. Let X be a complete metric space and let A ⊂ X be a closed subset. Let
S : A→ A be a contraction mapping. Then S has a unique fixed point.

Proof. Let x ∈ A be any point. Consider the sequence {xj} defined by

xj := S(j)x, j = 0, 1, 2, ...

where S(0) = Id is the identity map and S(j) := S ◦ S(j−1) for all j ∈ N. Then for all j < k we
have

d(xj, xk) ≤
k−1∑
`=j

d(x`, x`+1) ≤
k−1∑
`=j

r`d(x, Sx) =
rj(1− rk−j−1)

1− r
d(x, Sx) ≤ rj

1− r
d(x, Sx).

It follows that {xj} is a Cauchy sequence, and since A is closed (hence complete), the limit

x∗ := limxj

exists and lies in A. Since a contraction mapping is continuous,

x∗ = limS(j)x∗ = limS ◦ S(j−1)x∗ = S(limS(j)x∗) = Sx∗.

Thus x∗ is a fixed point of S.
Finally, if y is another fixed point of S, then

0 ≤ (1− r)d(x∗, y) = d(Sx∗, Sy)− rd(x∗, y) ≤ (r − r)d(x∗, y) = 0.

Thus y = x∗, and the proof is complete. �

3. THE EXISTENCE AND UNIQUENESS THEOREM FOR FIRST ORDER ODE

DEFINITION 3.1. Let f : U → Rn be a function defined on a domain U ⊂ Rm. We say that f is
locally Lipschitz if for each p ∈ U and each ε ∈ (0, dist(p, U c) there exists a constant K = Kε,p

such that
|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ B(p, ε) := {z ∈ Rm ; |z − p| < ε}. �

REMARK 3.2. Note that any differentiable function is locally lipschitz, but that the converse is not
true, as is shown by the function f : R→ R defined by f(x) = |x|. �

Before stating our next definition and result, we introduce the following notation for the sake of
convenience. Let D ⊂ Rn and V ⊂ D × R be domains. For each t ∈ R, we write

Vt = {x ∈ D ; (x, t) ∈ V }.

(Note that this set may be empty.)

DEFINITION 3.3. Let D ⊂ Rn and V ⊂ D × R be domains, let F : V → Rn be a continuous
time-dependent vector field. We say that the function Ft : Vt → Rn defined by Ft(x) := F (x, t)
is locally uniformly Lipschitz on Vt if Ft is locally Lipschitz and moreover the Lipschitz constant
can be taken locally uniform with respect to t. �

The main theorem of these notes is the following result.
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THEOREM 3.4. Let D ⊂ Rn and V ⊂ D × R be domains, let F : V → Rn be a continuous
time-dependent vector field. Assume that for each t ∈ R the function Ft : Vt → Rn defined by
Ft(x) := F (x, t) is locally uniformly Lipschitz on Vt. Then for each (x, s) ∈ V there exists an
integral curve γ(x,s) : I(x,s) → D for F . Moreover, the set of integral curves possesses the following
uniqueness property: if γ(x,s) : I(x,s) → D and γ̃(x,s) : Ĩ(x,s) → D are two integral curves through
x at time s, then γ(x,s)(t) = γ̃(x,s)(t) for all t ∈ I(x,s) ∩ Ĩ(x,s).

Proof. Let (xo, to) ∈ V and choose ε > 0 such that F is continuous in B(xo, ε) × (−ε, ε) and
Lipschitz in the first variable with Lipschitz constant K, i.e.,

|F (x, t)− F (y, t)| ≤ K|x− y|

for all (x, t), (y, t) ∈ B(xo, ε)× (−ε, ε). By continuity there exists a constant M > 0 such that

|F (x, t)| ≤M

for all (x, t) ∈ B(xo, ε)× (−ε, ε).
Choose positive constants α and β such that

(i) with Iα := {t ∈ R ; |t− to| ≤ α} and Bβ := {x ∈ Rn ; |x− xo| ≤ β},

Bβ × Iα ⊂ B(xo, ε)× (−ε, ε),

(ii) αM < β, and
(iii) αK < 1.

Let A denote the set of continuous maps φ : Iα → Rn such that

|φ(t)− xo| ≤ β for all t ∈ Iα.

Equipping A with the uniform norm

||φ||u := sup
Iα

|φ|

makes A into a closed bounded subset of a Banach (and hence complete metric) space, as we have
discussed earlier in the course. Thus A is itself a complete metric space with respect to the metric

d(φ, φ̃) := ||φ− φ̃||u.

Consider the operator T defined by

Tφ(t) := xo +

∫ t

to

F (φ(s), s)ds.

Observe first that if φ ∈ A then clearly Tφ is continuous and defined on all of Iα. Moreover, for
t ∈ Iα one has

|Tφ(t)− xo| ≤M |t− to| ≤Mα < β,

and thus Tφ ∈ A . That is to say,

T : A → A .
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Next, observe that for φ1, φ2 ∈ A one has

|Tφ1(t)− Tφ2(t)| =

∣∣∣∣∫ t

to

(F (φ1(s), s)− F (φ2(s), s)) ds

∣∣∣∣
≤
∫ t

to

K |φ1(s)− φ2(s)| ds

≤ Kα sup
Iα

|φ1 − φ2| .

It follows that for some r ∈ (0, 1),

||Tφ1 − Tφ2||u ≤ r||φ1 − φ2||u.
Thus T : A → A is a contraction mapping, and therefore by Proposition 2.2 it has a unique fixed
point φ∗ ∈ A .

Being a fixed point of T , φ∗ satisfies the equation

(1) φ∗(t) = xo +

∫ t

to

F (φ∗(s), s)ds,

and therefore
φ∗(t+ h)− φ∗(t)

h
=

1

h

∫ t+h

t

F (φ∗(s), s)ds
h→0−→F (φ∗(t), t).

Since φ∗ ∈ A , the latter limit is continuous, and thus the fixed point φ∗ of T is differentiable.
Differentiation of the integral equation (1) with respect to t shows that

φ′∗(t) = F (φ∗(t), t).

Since φ∗(to) = xo, we see that γ(xo,to)(t) := φ∗(t) is an integral curve of F through xo at time to.
Conversely, any integral curve of F satisfies the equation (1), and is therefore a fixed point of

T . Since contraction mappings have a unique fixed point, we see that any two integral curves
must agree on Iα. By carrying out the same proof in small intervals centered at all points of
the intersection of the open set I(x,s) ∩ Ĩ(x,s), we obtain the uniqueness statement claimed in the
theorem. The proof is therefore complete. �

4. MAXIMAL INTEGRAL CURVES, FUNDAMENTAL DOMAINS, AND FLOWS

Our next goal is to ‘glue together’ the integral curves of a time-dependent vector fields. The first
task is to maximally extend integral curves.

Let D ⊂ Rn and V ⊂ D×R be domains, and let F : V → Rn be a continuous, time-dependent
vector field such that for each s ∈ R, Fs : Vs → Rn is locally uniformly Lipschitz. Fix an initial
condition (x, s) ∈ V . By Theorem 3.4, F has an integral curve through x with initial time s.

PROPOSITION 4.1. With the notation above, there exists a unique integral curve γ(x,s) : I(x,s) → D
for F passing through x with initial time s such that if φ : I → D is another integral curve for F
through (x, s) then I ⊂ I(x,s).

Proof. With respect to inclusion of domains, the set I(x,s) of all integral curves for F passing
through x with initial time s is partially ordered. Moreover, given two such integral curves φi :
Ii → D, i = 1, 2, Theorem 3.4 implies that the function

φ(t) :=

{
φ1(t) , t ∈ I1
φ2(t) , t ∈ I2
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is well-defined, and therefore φ : I1 ∪ I2 → D is also an integral curve for F passing through x
with initial time s. It follows that I(x,s) is a directed set. We have to show that it has a maximal
element, which is then of course unique.

To this end, let {φi : Ii → D}i∈I be a maximal linearly ordered subset of I(x,s). Then the set
I :=

⋃
i∈I Ii is open, and the curve φ : I → D defined by

φ(t) = φi(t), t ∈ Ii
is well-defined by the uniqueness part of Theorem 3.4, and therefore in I(x,s). Thus I(x,s) has a
unique maximal element in I(x,s). �

DEFINITION 4.2. The unique maximal element of the set I(x,s) defined in the proof of the previous
proposition is called the maximal integral curve for F through (x, s). We shall denote the maximal
integral curve for F through (x, s) by

Γ(x,s) : I(x,s) → D.

One can also consider the unions of the graphs of the maximal integral curves.

DEFINITION 4.3. The set

UF := {(x, s, t) ; (x, s) ∈ V, t ∈ I(x,s)} ⊂ V × R
is called the fundamental domain of the time-dependent vector field F , and the map

ΦF : UF → V

defined by ΦF (x, s, t) := (Γ(x,s)(t), t) is called the time-dependent flow of F . �

Let us denote by πD : V → D the restriction to V of the natural projection π : D × R→ D.

DEFINITION 4.4. The map Φt
s : D → D

(2) Φt
s(x) := Γ(x,s)(t) = πD ◦ ΦF (x, s, t)

is called the time-t map for the initial time s. �

The uniqueness part of Theorem 3.4 implies a symmetry appearing in the composition law for
the maps (2), stated in the following result.

PROPOSITION 4.5. For each s ∈ R one has

Φs
s(x) = x for all x ∈ Vs.

Moreover, if (x, s, t) ∈ UF and (Φt
s(x), t, r) ∈ UF , we have the pseudo-group law

Φr
t ◦ Φt

s(x) = Φr
s(x).

5. AUTONOMOUS VECTOR FIELDS

From the point of view of classical mechanics, the general setting of time-dependent vector fields
corresponds to physical systems in which the laws of physics change with time. Such situations
can happen, but in nature we mostly find them when the particular physical system we are studying
is not closed, i.e., it is part of a larger physical system.

By definition, the vector field representing a closed physical system is autonomous. That is to
say, for each x ∈ D

t 7→ F (x, t)
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is constant. In this case, we choose the convention of always taking initial value problems to start
at time s = 0.

The fundamental domain and the flow are defined just slightly differently, so as to eliminate the
initial time. Let us make the definitions precise.

DEFINITION 5.1. Let ξ : D → Rn be a vector field on a domain D ⊂ Rn.
(i) The maximal integral curve for ξ through x ∈ D is the maximal integral curve

Γx : Ix → D

where Γx := Γ(x,0) and Ix := I(x,0).
(ii) The fundamental domain of ξ is the domain

U 0
ξ := {(Γx(t), t) ;x ∈ D} ⊂ D × R.

(iii) The flow of ξ is the map Φξ : U 0
ξ → D defined by

Φξ(x, t) = Γx(t).

The time-t map is the map Φt
ξ defined by

Φt
ξ(x) = Φξ(x, t).

�

Note that U 0
ξ always contains D × {0}. Note as well that the time-t maps define the pseudo-

group law

(3) Φt
ξ ◦ Φs

ξ = Φt+s
ξ .

The link between the autonomous and time-dependent scenarios is the identity

Φt
s = Φt−s

ξ .

The pseudo-group law (3) is not a group law only because integral curves are not defined for a
long enough time, i.e., even if t and s both lie in the domains of their respective integral curves, t+s
may not. The situation in which this failure does not happen is therefore particularly important,
and we study it in more detail now.

DEFINITION 5.2. A vector field ξ : D → Rn is said to be complete (sometimes also called
completely integrable) if every maximal integral curve is defined on the entire real line. �

We have the following simple Proposition.

PROPOSITION 5.3. Let ξ : D → Rn be a locally Lipschitz vector field defined on a domain
D ⊂ Rn. Then the following are equivalent.

(i) ξ is complete.
(ii) There exists a positive number ε such that for each x ∈ D, Ix ⊃ (−ε, ε).

(iii) For each t ∈ R, the map Φt
ξ is a C 1-diffeomorphism of D: Φt

ξ ∈ Diff1(D).
(iv) For some t ∈ R− {0}, Φt

ξ ∈ Diff1(D).
(v) The set of maps {Φt

ξ}t∈R is a 1-parameter subgroup of Diff1(D).
(vi) The fundamental domain of ξ is D × R.

The proof is left to the reader as an exercise.
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6. APPROXIMATION

In this section we study a technique, initiated by Euler, for the approximation of integral curves
and more generally flows. We confine ourselves to autonomous vector fields for the time being.

DEFINITION 6.1. Let ξ : D → Rn be a vector field on a domain D ⊂ Rn and let I ⊂ R be
an open interval containing 0. An algorithm for ξ is a map H : D × I → D such that, with
Ht(x) := H(x, t),

(i) H0 = Id,
(ii) H(x, ·) is C 1 and its derivative is continuous in D × I , and

(iii) ∂H
∂t

∣∣
t=0

= ξ.

The basic approximation theorem is the following result.

THEOREM 6.2. Let H be an algorithm for a Lipschitz vector field ξ. If (t, x) ∈ U 0
ξ then for

all N >> 0, H(N)
t/N (x) is defined, and converges to Φt

ξ(x). Conversely, if H(N)
t/N (x) is defined and

converges for t ∈ [0, T ] then (T, x) ∈ U 0
ξ and

lim
N→∞

H
(N)
t/N (x) = Φt

ξ(x).

In both statements, the converges is locally uniform on D × I .

Before proving Theorem 6.2, we establish the following lemma which we shall need.

LEMMA 6.3. Fix a Lipschitz vector field ξ : D → Rn defined on a domain D ⊂ Rn, a point
xo ∈ D and a number ε ∈ (0, dist(x,Dc)). Fix a constant K > 0 such that

||ξ(x)− ξ(y)|| ≤ K||x− y||, x, y ∈ B(xo, ε).

Then for any interval I ⊂ R containing 0 such that Φt
ξ(x) is defined for all t ∈ I and x ∈ B(xo, ε),

we have the estimate

||Φt
ξ(x)− Φt

ξ(y)|| ≤ eK|t|||x− y||, x, y ∈ B(xo, ε), t ∈ I.

Proof. Observe that with f(t) := ||Φt
ξ(x)− Φt

ξ(y)|| we have

f(t) =

∣∣∣∣∣∣∣∣x− y +

∫ t

0

(ξ(Φs
ξ(x))− ξ(Φs

ξ(y)))ds+ x− y
∣∣∣∣∣∣∣∣ ≤ ||x− y||+K

∫ t

0

f(s)ds =: g(t).

Now, g′(t) = Kf(t) ≤ Kg(t), and we have

d

dt

(
e−Ktg(t)

)
≤ 0.

Thus
g(t) ≤ g(0)eKt ≤ g(0)eK|t|

which is what we want. �

Proof of Theorem 6.2. We begin by showing that the convergence holds locally. To this end, let
xo ∈ D. Then

(4) Ht(x) = x+O(t) and Φt
ξ(x)−Ht(x) = o(t).
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If H(j)
t/j(x) is well-defined for x in a small neighborhood of xo, for j = 1, 2, ..., N − 1, then the

semi-group law for time-t maps and the first estimate in (4) shows that

H
(N)
t/N (x)− x = H

(N)
t/N (x)−H(N−1)

t/N (x) +H
(N−1)
t/N (x)−H(N−2)

t/N (x)

+...+Ht/N(x)− x
= NO(t/N) = O(t),

which is small independently of N , for t sufficiently small. Thus for x sufficiently close to xo and
t sufficiently small, H(N)

t/N (x) remains close to xo for all N . In other words, with

xj = H
(j)
t/j(x),

||xj − xo|| < ε for x sufficiently close to xo and t sufficiently small. From the semi-group law for
Φt
ξ, we also have

Φt
ξ(x)−H(N)

t/N (x) = (Φ
t/N
ξ )(N)(x)−H(N)

t/N (x)

= (Φ
t/N
ξ )(N−1)(Φ

t/N
ξ (x))− (Φ

t/N
ξ )(N−1)(Ht/N(x))

+
N∑
j=2

(Φ
t/N
ξ )(N−j)(Φ

t/N
ξ (xj))− (Φ

t/N
ξ )(N−j)(Ht/N(xj)),

Thus, by repeated application of Lemma 6.3 we find the estimate

||Φt
ξ(x)−H(N)

t/N (x)|| ≤
N∑
k=1

eK|t|(N−k)/N ||Φt/N
ξ (xN−k−1)−Ht/N(xN−k−1)||

≤ NeK|t|o(t/N),

and the last quantity converges, as N → ∞, to 0 uniformly on a small ball centered at xo and for
all sufficiently small t. The final estimate uses the second estimate of (4).

Having handled the case of short times, we now proceed to longer times. To this end, suppose
first that Φt

ξ(x) is defined for all t ∈ [0, T ]. By what we have just done, if k is sufficiently large
then

Φ
t/k
ξ (y) = lim

k→∞
H

(k)
t/k(y)

holds uniformly for t ∈ [0, T ] and y in a bounded neighborhood of the curve {Φt
ξ(x) ; t ∈ [0, T ]}.

Thus

Φt
ξ(x) = (Φ

t/k
ξ )(k)(x) = lim

N→∞
(H

(N)
t/(kN))

(k)(x) = lim
N→∞

H
(Nk)
t/(kN)(x) = lim

N→∞
H

(N)
t/N (x).

Conversely, suppose t 7→ H
(N)
t/N (x) converges to a curve c : [o, T ]→ D. Let

S = {t ∈ [0, T ] ; Φt
ξ(x) is defined and equal to c(t)}.

Clearly 0 ∈ S, and from the local result S is relatively open. Let {tk} ⊂ S and suppose tk → t.
Then Φtk

ξ (x)→ c(t) so by Theorem 3.4 Φt
ξ(x) is defined, and by continuity, Φt

ξ(x) = c(t). Thus S
is closed, and hence S = [0, T ].

Finally, observe that by existence and uniqueness, Φ−tξ = Φt
−ξ, so the above proof applies to

negative times as well. �
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7. SUSPENSION: A REMARK

Autonomous vector fields are special cases of time-dependent vector fields. In this section, we
note that the converse is true. To this end, let D ⊂ Rn and V ⊂ D × R be domains and let
F : V → Rn be a time-dependent vector field. Define ξF : V → Rn × R by the formula

ξF (x, s) := (F (x, s), 1)

The vector field ξF is then autonomous, and its flow is given by the time-t maps

Φt
ξF

(x, s) = (Φs+t
s (x), s+ t).

It is therefore possible to extract the flow of F from that of ξF . If one can find the latter flow, this
is of course possible. In fact, the hypotheses of Theorem 3.4 apply to ξF as soon as F is Lipschitz
on V .
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