MAT-550 Schul

Midterm

First Name:

Last Name:

Stony Brook ID: _____

Signature:

Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example/construction then you must prove it is such. Please write clearly.

Rules.

- 1. Start when told to; stop when told to.
- 2. No notes, books, etc,...
- 3. Turn OFF all unauthorized electronic devices (for example, your cell phone).

1 (30 pts)	2 (10 pts)	3 (10 pts)	4 (10 pts)	5 (10 pts)

DO quesion number 1 (FIVE of the SIX parts). Choose 3 out of the 4 questions numbered 2-5. 1. (Do FIVE of the SIX parts of QUESTION 1. Each part is worth 6 points) (A.) Suppose that $f \in C[0, 1]$ is a real valued continuous function on [0, 1], such that

$$\int_0^1 x^n f(x) dx = 0$$

for all nonnegative integers n. Show that f(x) = 0 for all $x \in [0, 1]$?

(B.) State the Open Mapping Theorem

(C.) State the Closed Graph Theorem

(D.) Define Weak L^p

(E) Give an example of a function f which is Weak L^3 , but $f \notin L^3$.

(F) State one of the two interpolation theorems we learned in class

2. (10 points)

Suppose X is a Banach space. Show that if X^* is separable, then X is separable.

3. (10 points) (You may use the open mapping theorem below.)

(a) Prove the Closed Graph Theorem

(b) Let $\ell^p(\mathbb{N}, \mathbb{R}) := \{(x_1, x_2, ...) : x_i \in \mathbb{R}, \sum x_i^p < \infty\}$ and for $x \in \ell^p(\mathbb{N}, \mathbb{R})$, set $\|x\|_p = (\sum |x_i|^p)^{\frac{1}{p}}$. Note that for $x \in \ell^1(\mathbb{N}, \mathbb{R})$ we have $\|x\|_7 \leq \|x\|_1$. Is it true that there is a C > 0 such that $\|x\|_1 \leq C \|x\|_7$ for all $x \in \ell^1(\mathbb{N}, \mathbb{R})$?

4. (10 points)

Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a Lipschitz vector field. Suppose also that the maximal integral curves of this (time-independent) vector field are defined on the entire real line, i.e. $\Phi_F^t : \mathbb{R}^2 \to \mathbb{R}^2$ is defined for all $t \in \mathbb{R}$. Show that there is a constant K > 0 such that

$$\|\Phi_F^t(x) - \Phi_F^t(y)\| \le e^{Kt} \|x - y\|.$$

5. (10 points)

Let $\epsilon > 0$ be given. Let $f : [0,2] \to \mathbb{R}$ be continuous. Show that there is a polynomial p such that p(k) = f(k) for $k \in \{0,1,2\}$ and for all $x \in [0,2]$ we have $|f(x) - p(x)| < \epsilon$.