1. (20 points) Calculate the following antiderivatives.
(i)

$$
\int \frac{1}{x^{2}-4 x} d t .
$$

Answer: Rewrite the denominator as $x(x-4)$ and use a partial fractions decomposition.

$$
\begin{aligned}
\frac{1}{x^{2}-4 x} & =\frac{A}{x}+\frac{B}{x-4} \\
1 & =A(x-4)+B x \\
1 & =(A+B) x-4 A
\end{aligned}
$$

By matching coefficients, we obtain the equations $A+B=0,-4 A=$ 1. The solutions are $A=-1 / 4, B=1 / 4$. Then

$$
\begin{aligned}
\int \frac{1}{x^{2}-4 x} d x & =\int \frac{-1 / 4}{x}+\frac{1 / 4}{x-4} d x \\
& =-\frac{1}{4} \ln |x|+\frac{1}{4} \ln |x-4|+C .
\end{aligned}
$$

(ii)

$$
\int \frac{8 x-7}{x^{2}-4 x+3} d t
$$

Answer: Factor the denominator as $x^{2}-4 x+3=(x-1)(x-3)$, then

$$
\begin{aligned}
\frac{8 x-7}{x^{2}-4 x+3} & =\frac{A}{x-1}+\frac{B}{x-3} \\
8 x-7 & =A(x-3)+B(x-1) \\
8 x-7 & =(A+B) x+(-3 A-B) .
\end{aligned}
$$

We get the equations $A+B=8,-3 A-B=-7$. These are solved by $A=-1 / 2, B=17 / 2$. Then

$$
\begin{aligned}
\int \frac{8 x-7}{x^{2}-4 x+3} d x & =\int \frac{-1 / 2}{x-1}+\frac{17 / 2}{x-3} d x \\
& =-\frac{1}{2} \ln |x-1|+\frac{17}{2} \ln |x-3|+C
\end{aligned}
$$

MAT126. Midterm two. October 31, 2019
2. (30 points) Show the divergence or convergence of the following integrals.
(i)

$$
\int_{0}^{\infty} \frac{8 x}{x^{2}+1} d x
$$

Answer: We show divergence by directly evaluating the integral, using the u-substitution $u=x^{2}+1$. Then $d u=2 d x$, and

$$
\begin{aligned}
\int_{0}^{\infty} \frac{8 x}{x^{2}+1} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{8 x}{x^{2}+1} d x \\
& =\lim _{t \rightarrow \infty} \int_{1}^{t^{2}+1} \frac{4}{u} d u \\
& =\lim _{t \rightarrow \infty}[4 \ln |u|]_{1}^{t^{2}+1} \\
& =\lim _{t \rightarrow \infty}\left[4 \ln \left|t^{2}+1\right|-4 \ln |1|\right] \\
& =+\infty
\end{aligned}
$$

This shows that the integral diverges.
(ii)

$$
\int_{0}^{\infty} \frac{1}{x^{45}+5} d x
$$

Answer: We show convergence by the comparison test. Note that we have that for $x>1$:

$$
0<\frac{1}{x^{45}+5}<\frac{1}{x^{45}}
$$

and $\int_{1}^{\infty} \frac{1}{x^{45}} d x$ converges. Then

$$
\int_{0}^{\infty} \frac{1}{x^{45}+5} d x=\int_{0}^{1} \frac{1}{x^{45}+5} d x+\int_{1}^{\infty} \frac{1}{x^{45}+5} d x
$$

is a sum of a proper integral (which automatically converges) and an improper integral, which converges by comparison with the function $\frac{1}{x^{45}}$. Therefore the given integral converges.

MAT126. Midterm two. October 31, 2019
(iii)

$$
\int_{0}^{\infty} \frac{1}{x^{2}-1} d x
$$

Answer: We show divergence by direct evaluation. The integrand has a pole at $x=1$, so we first split the improper integral into two improper integrals:

$$
\int_{0}^{\infty} \frac{1}{x^{2}-1} d x=\int_{0}^{1} \frac{1}{x^{2}-1} d x+\int_{1}^{\infty} \frac{1}{x^{2}-1} d x
$$

It is enough to prove that one of these integrals diverges. Consider the first. By factoring the denominator $x^{2}-1=(x-1)(x+1)$, we have the partial fractions decomposition

$$
\begin{aligned}
\frac{1}{x^{2}-1} & =\frac{A}{x-1}+\frac{B}{x+1} \\
1 & =A(x+1)+B(x-1) \\
1 & =(A+B) x+(A-B) .
\end{aligned}
$$

The equations $A+B=0, A-B=1$ has solutions $A=1 / 2, B=$ $-1 / 2$. Then

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x^{2}-1} d x & =\lim _{a \rightarrow 1^{-}} \int_{0}^{a} \frac{1}{x^{2}-1} d x \\
& =\lim _{a \rightarrow 1^{-}} \int_{0}^{a} \frac{1 / 2}{x-1}-\frac{1 / 2}{x+1} d x \\
& =\lim _{a \rightarrow 1^{-}}\left[\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|\right]_{0}^{a} \\
& =\lim _{a \rightarrow 1^{-}}\left[\frac{1}{2} \ln |a-1|-\frac{1}{2} \ln |a+1|-\frac{1}{2} \ln |0-1|+\frac{1}{2} \ln |0+1|\right] \\
& =-\infty
\end{aligned}
$$

since \ln has a pole at 0 . This proves the integral diverges.
3. (30 points)
(i) Sketch the region bounded by $y=x^{2}-x$ and $y=5 x-x^{2}$

Answer:

(ii) Find the area of the region above

Answer: First we need to determine where the curves intersect. This is done by setting equal the two equations and solving for x.

$$
\begin{aligned}
x^{2}-x & =5 x-x^{2} \\
2 x^{2}-6 x & =0 \\
x(x-3) & =0
\end{aligned}
$$

This shows that the curves intersect at $x=0,3$. From the picture above, the curve $5 x-x^{2}$ is on top, so the area of the enclosed
region is

$$
\begin{aligned}
\int_{0}^{3}\left(5 x-x^{2}\right)-\left(x^{2}-x\right) d x & =\int_{0}^{3} 6 x-2 x^{2} d x \\
& =\left[\frac{6}{2} x^{2}-\frac{2}{3} x^{3}\right]_{0}^{3} \\
& =9
\end{aligned}
$$

(iii) The birth rate of a population is

$$
b(t)=4000 e^{0.5 t}
$$

per year, and the death rate is

$$
d(t)=1700 e^{0.4 t}
$$

per year. Find the area between these curves and the times $t=0$ and $t=10$ years. What does this area represent?
Answer: The area between the curves is

$$
\begin{aligned}
\int_{0}^{10} b(t)-d(t) d t & =\int_{0}^{10} 4000 e^{0.5 t}-1700 e^{0.4 t} d t \\
& =\left[\frac{4000}{0.5} e^{0.5 t}-\frac{1700}{0.4} e^{0.4 t}\right]_{0}^{10} \\
& =\left(8000 e^{5}-4250 e^{4}\right)-(8000-4250) \\
& =8000 e^{5}-4250 e^{4}-3750 .
\end{aligned}
$$

The area represents the net change in population over 10 years.
4. (20 points) Determine the following antiderivatives.
(i)

$$
\int \sin ^{2}(3 x) d x
$$

Answer: Using the identity $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))$, we get

$$
\begin{aligned}
\int \sin ^{2}(3 x) d x & =\int \frac{1}{2}(1-\cos (6 x)) d x \\
& =\frac{x}{2}-\frac{1}{12} \sin (6 x)+C
\end{aligned}
$$

(ii)

$$
\int \sin ^{3}(7 x) \cos ^{2}(7 x) d x
$$

Answer: Using the identity $\sin ^{2}(x)=1-\cos ^{2}$, the integrand becomes

$$
\sin ^{3}(7 x) \cos ^{2}(7 x)=\sin (7 x)\left(1-\cos ^{2}(7 x)\right) \cos ^{2}(7 x)
$$

Then with the substitution $u=\cos (7 x)$, we have $d u=-7 \sin (7 x) d x$ and

$$
\begin{aligned}
\int \sin ^{3}(7 x) \cos ^{2}(7 x) d x & =\int \sin (7 x)\left(1-\cos ^{2}(7 x)\right) \cos ^{2}(7 x) d x \\
& =\int-\frac{1}{7}\left(1-u^{2}\right) u^{2} d u \\
& =-\frac{1}{7}\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)+C \\
& =\frac{1}{35} \cos ^{5}(7 x)-\frac{1}{21} \cos ^{3}(7 x)+C .
\end{aligned}
$$

5. (20 points). Use a trigonometric substitution to determine the following antiderivatives.
(i)

$$
\int \frac{3}{x^{2}+1} d x
$$

Answer: Set $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$. Then

$$
\begin{aligned}
\int \frac{3}{x^{2}+1} d x & =\int \frac{3 \sec ^{2} \theta}{\tan ^{2}+1} d \theta \\
& =\int \frac{3 \sec ^{2} \theta}{\sec ^{2} \theta} d \theta \\
& =3 \theta+C \\
& =3 \arctan (x)+C .
\end{aligned}
$$

(ii)

$$
\int \frac{4}{\sqrt{1-x^{2}}} d x
$$

Answer: Set $x=\sin \theta$, so $d s=\cos \theta d \theta$. Then

$$
\begin{aligned}
\int \frac{4}{\sqrt{1-x^{2}}} d x & =\int \frac{4 \cos \theta}{\sqrt{1-\sin ^{2} \theta}} d x \\
& =\int \frac{4 \cos \theta}{\cos \theta} d x \\
& =4 \theta+C \\
& =4 \arcsin (x)+C .
\end{aligned}
$$

