MAT 126 - Spring 2016 - Midterm 2

NAME: \qquad
Recitation \#: \qquad
April 6, 2016

INSTRUCTIONS - PLEASE READ

) Please turn off your cell phone and put it away.
\measuredangle Please write your name and your section number right now.
\Rightarrow This is a closed book exam. You are NOT allowed to use a calculator or any other electronic device or aid.
\lesssim The midterm has 6 problems worth a total of 100 points. Look over your test packet as soon as the exam begins. If you find any missing pages or problems please ask a proctor for another test booklet.
\triangleleft Show your work. To receive full credit, your answers must be neatly written and logically organized. If you need more space, write on the back side of the preceding sheet, but be sure to label your work clearly. You do not need to simplify your answers unless explicitly instructed to do so.
\leftrightarrows Academic integrity is expected of all Stony Brook University

Problem	SCORE
$\mathbf{1 .}$	
$\mathbf{2 .}$	
$\mathbf{3 .}$	
$\mathbf{4 .}$	
$\mathbf{5 .}$	
$\mathbf{6 .}$	
Total	

LEC 01	MWF	10:00-10:53am	Joseph Adams
R01	F	1:00-1:53pm	Jaroslaw Jaracz
R02	Tu	4:00-4:53pm	Charles Cifarelli
R03	Tu	1:00-1:53pm	Jaroslaw Jaracz
R04	Th	8:30-9:23am	\| Alaa Abd-El-Hafez
R05	M	1:00-1:53pm	Thomas Rico
R06	M	9:00-9:53am	Zhuang Tao
R07	W	11:00-11:53am	Dyi-Shing Ou
LEC 02	TuTh	2:30-3:50pm	Raluca Tanase*
R08	Tu	4:00-4:53pm	Gaurish Telang
R09	Tu	1:00-1:53pm	\| Yuan Gao
R10	Th	1:00-1:53pm	Alaa Abd-El-Hafez
R11	F	1:00-1:53pm	Ruijie Yang
R12	W	12:00-12:53pm	\| Christopher Ianzano
R13	M	10:00-10:53am	\| Zhuang Tao
R14	M	12:00-12:53pm	\| Thomas Rico
LEC 03	MW	4:00-5:20pm	David Kahn
R15	W	9:00-9:53am	Ruijie Yang
R16	Tu	10:00-10:53am	\| Ying Chi
R17	W	10:00-10:53am	\| Ying Chi
R18	Th	4:00-4:53pm	\| Gaurish Telang
R31	W	5:30-6:23pm	\| Mariangela Ferraro
R32	M	5:30-6:23pm	\| Charles Cifarelli
R33	Tu	1:00-1:53pm	\| Yu Zeng

Some trigonometric formulas that might be useful:

$$
\begin{array}{ll}
\sin ^{2}(x)+\cos ^{2}(x)=1 & \sin (2 x)=2 \sin (x) \cos (x) \\
\tan ^{2}(x)=\sec ^{2}(x)-1 & \cos (2 x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)
\end{array}
$$

Problem 1. (18 points) Compute the following integrals:
a) $\int_{0}^{\pi / 2} x^{2} \cos (2 x) d x$
b) $\int \tan ^{3}(x) \sec (x) d x$

Problem 2. (18 points) Compute the following integrals:
a) $\int \frac{5 x^{2}-x+2}{\left(x^{2}+1\right)(x-1)} d x$
b) $\int e^{x} \sin x d x$

Problem 3. (15 points) Evaluate the integral $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$, for $-3 \leq x \leq 3$. Simplify your final answer.

Problem 4. (24 points) The region R in the first quadrant bounded by $y=x^{2}+1$ and $y=x+3$ is shown to the right.
a) Find the intersection points of the two graphs and carefully label the figure.

b) Find the area of the region R.
c) Find the volume of the solid of revolution that results when R is revolved about the x-axis.

This part of the question requires material that we haven't covered yet. This type of question will be on the final.

Problem 5. (16 points) Evaluate the following improper integrals or explain why they diverge. Simply writing "converges" or "diverges" with no explanation or work will result in no credit.
a) $\int_{-1}^{2} \frac{1}{x^{\frac{2}{3}}} d x$
b) $\int_{0}^{1} \ln (x) d x$

Problem 6. (8 points) Determine whether the following statements are true or false. Circle your response and give a brief explanation (a reason why it's true or an example where it fails).
a) TRUE FALSE Suppose that f is a continuous function on $(-\infty, \infty)$. Then

$$
\int_{-\infty}^{+\infty} f(x) d x=\lim _{R \rightarrow+\infty} \int_{-R}^{R} f(x) d x
$$

b) TRUE FALSE Let g be a continuous function on $[0,+\infty)$ such that $\lim _{x \rightarrow+\infty} g(x)=0.1$. Then the improper integral $\int_{0}^{+\infty} g(x) d x$ is always divergent.

