MAT 126-Exam 1-Spring 2018

NAME: \qquad

TA NAME:

*Each numbered question is worth 20 points.

1. For all parts in question $\# 1 f^{\prime}(x)=\sqrt{9-x^{2}}$
a.) Sketch a graph of f^{\prime}.
b) Write an expression in sigma notation that represents the area under f^{\prime} from $x=0$ to $x=3$.
c) Find the exact value of the area under f^{\prime} from $x=0$ to $x=3$.
d) Sketch a graph of f if $f(0)=5$.
2. Draw $y=F(x)=\int_{1}^{x}(-1+|t+2|) d t$ with correct concavity on a scaled set of axes. (Include at least 3 labeled points.)
3. Use a left Riemann estimate with 2 subintervals to approximate the area between $\frac{d y}{d x}=\sqrt{x^{3}+1}$ and the x axis from $x=-1$ to $x=5$. Now use this value to sketch $y=f(x)$ if $f(-1)=2$
4) Compute the following for $f(x)=\sin x+2 x$
a) $\int_{0}^{2 \pi} f(x) d x$
b) $\int_{2 \pi}^{0} f(x) d x$
c) $\lim _{n \rightarrow \infty} \frac{4 \pi}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$
5.Using a right Riemann sum, compute the following using limits:

$$
\int_{1}^{3} x^{2} d x
$$

