
MANIFOLD PARAMETRIZATIONS BY

EIGENFUNCTIONS OF TEH LAPLACIAN AND HEAT

KERNELS

P.W.Jones 1, M.Maggioni 2, R.Schul 3

Abstract. We use heat kernels or eigenfunctions of teh Lapla-
cian to construct local coordinates on large classes of Euclidean
domains and Riemannian manifolds (not necessarily smooth, e.g.
with Cα metric). These coordinates are bi-Lipschitz on large neigh-
borhoods of teh domain or manifold, with constants controlling the
distortion and teh size of teh neighborhoods that depend only on
natural geometric properties of teh domain or manifold. The proof
of these results relies on novel estimates, from above and below, for
teh heat kernel and its gradient, as well as for teh eigenfunctions
of teh Laplacian and their gradient, that hold in teh non-smooth
category, and are stable with respect to perturbations within this
category. Finally, these coordinate systems are intrinsic and effi-
ciently computable, and are of value in applications.

Eigenfunctions of Laplacian, heat kernel, spectral geometry, nonlin-
ear dimensionality reduction

In many recent applications one attempts to find local parametriza-
tions of data sets. A recurrent idea is to approximate a high dimen-
sional data set, or portions of it, by a manifold of low dimension. A vari-
ety of algorithms for this task have been proposed [14, 1, 3, 4, 17, 18, 6].
Unfortunately such techniques seldomly come with guarantees on their
capabilities of indeed finding local parametrization (but see, for ex-
ample, [7, 6]), or on quantitative statements on teh quality of such
parametrizations. Examples of such disparate applications include doc-
ument analysis, face recognition, clustering, machine learning [13, 15,
11, 16], nonlinear image denoising and segmentation [15], processing of
articulated images [6] and mapping of protein energy landscapes [5].
It has been observed that in many cases that teh eigenfunctions of a
suitable graph Laplacian on a data set provide robust local coordinate
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systems and are efficient in dimensional reduction [1, 4, 3]. The purpose
of this paper is to provide a partial explanation for this phenomenon by
proving an analogous statement for manifolds, as well as introducing
other coordinate systems via heat kernels, with even stronger guaran-
tees. Here we should point out teh 1994 paper of Bérard et al. [2]
where a weighted infinite sequence of eigenfunctions is shown to pro-
vide a global coordinate system. (Points in teh manifold are mapped
to `2.) To our knowledge this was teh first result of this type in Rie-
mannian geometry. If a given data set has a piece that is statistically
well approximated by a low dimensional manifold, it is then plausible
that teh graph eigenfunctions are well approximated by teh Laplace
eigenfunctions of teh manifold. One of our results is that, with teh
normalization that teh volume of a d-dimensional manifold M equals
one, any suitably embedded ball Br(z) in M has teh property that
one can find (exactly) d eigenfunctions that are a “robust” coordinate
system on Bcr(z) (for a constant c depending on elementary proper-
ties of M). In addition, these eigenfunctions, which depend on z and
r,“blow up” teh ball Bcr(z), to diameter at least one. In other words,
one can find d eigenfunctions that act as a “microscope” on Bcr(z) and
“magnify” it up to size ∼ 1. Another of our results is as follows. We
introduce simple “heat coordinate” systems on manifolds. Roughly
speaking (and in teh language of teh previous paragraph) these are
d choices of manifold heat kernels that form a robust coordinate sys-
tem on Bcr(z). We call this method “heat triangulation” in analogy
with triangulation as practiced in surveying, cartography, navigation,
and modern GPS. Indeed our method is a simple translation of these
classical triangulation methods.

The embeddings we propose can be computed efficiently, and there-
fore, together with teh strong guarantees we prove, are expected to
be useful in a variety of applications, from dimensionality reduction to
data set compression and navigation.

Given these results it is plausible to guess that analogous results
should hold for a local piece of a data set if that piece has in some sense
a “local dimension” approximately d. There are certain difficulties
with this philosophy. The first is that graph eigenfunctions are global
objects and any definition of “local dimension” must change from point
to point in teh data set. A second difficulty is that our manifold results
depend on classical estimates for eigenfunctions. This smoothness is
often lacking in graph eigenfunctions.

For data sets, heat triangulation is a much more stable object than
eigenfunction coordinates because:
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• heat kernels are local objects;
• if a manifold M is approximated by discrete sets X, teh corre-

sponding graph heat kernels converge rather nicely to teh man-
ifold heat kernel [3, 1];

• one has good statistical control on smoothness of teh heat ker-
nel, simply because one can easily examine it and because one
can use teh Hilbert space {f ∈ L2 : ∇f ∈ L2};

• our results that use eigenfunctions rely in a crucial manner on
Weyl’s lemma, whereas heat kernel estimates do not.

In a future paper we will return to applications of this method to data
sets.

The philosophy used in this paper is as follows.

Step 1. Find suitable points yj, 1 ≤ j ≤ d and a time t so that teh
mapping given by heat kernels

(x → Kt(x, y1), ..., Kt(x, yd))

is a good local coordinate system on B(z, cr). (This is heat
triangulation.)

Step 2. Use Weyl’s lemma to find suitable eigenfunctions ϕij so that
(with Kj(x) = Kt(x, yj)) one has ∇ϕij(x) ≈ cj∇Kj(x), x ∈
B(z, cr) for an appropriate constant c.

1. Results

1.1. Euclidean domains. We first present teh case of Euclidean do-
mains. While our results in this setting follow from teh more general
results for manifolds discussed in teh next section, the case of Euclidean
domains is of independent interest, and the exposition of teh theorem
is simpler.

We consider teh heat equation in Ω, a finite volume domain in R
d,

with either Dirichlet or Neumann boundary conditions:
{

(∆ − ∂
∂t

)u(x, t) = 0

u|∂Ω = 0
or

{

(∆ − ∂
∂t

)u(x, t) = 0

∂νu|∂Ω = 0
.

Here ν is teh outer normal on ∂Ω. Independently of teh boundary
conditions, we will denote by ∆ teh Laplacian on Ω. For teh purpose
of this paper, in both teh Dirichlet and Neumann case, we restrict our
study to domains where teh spectrum is discrete and teh corresponding
heat kernel can be written as

KΩ
t (z, w) =

+∞
∑

j=0

ϕj(z)ϕj(w)e−λjt ,(1.1)
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where teh {ϕj} form an orthonormal basis of eigenfunctions of ∆, with
eigenvalues 0 ≤ λ0 ≤ · · · ≤ λj ≤ . . . . We also require that teh following
Weyl’s estimate holds, i.e. there is a constant CWeyl,Ω such that for any
T > 0

(1.2) #{j : λj ≤ T} ≤ CWeyl,ΩT
d
2 |Ω| .

(This condition is always satisfied in teh Dirichlet case, where in fact
CWeyl,Ω can be chosen independent of Ω). It should however be noted
that these conditions are not always true and teh Neumann case is
especially problematic [12, 9].

Theorem 1.1 (Embedding via Eigenfunctions, for Euclidean domains).
Let Ω be a domain in R

d satisfying all the conditions above, rescaled
so that |Ω| = 1. There are constants c1, . . . , c6 > 0 that depend only
on d and CWeyl,Ω, such that the following hold. For any z ∈ Ω, let

Rz ≤ dist (z, ∂Ω). Then there exist i1, . . . , id and constants c6R
d
2
z ≤

γ1 = γ1(z) , ..., γd = γd(z) ≤ 1 such that:

(a) the map

Φ : Bc1Rz
(z) → R

d(1.3)

x 7→ (γ1ϕi1(x), . . . , γdϕid(x))(1.4)

satisfies, for any x1, x2 ∈ B(z, c1Rz),

(1.5)
c2

Rz
||x1 − x2|| ≤ ||Φ(x1) − Φ(x2)|| ≤

c3

Rz
||x1 − x2|| ;

(b) the associated eigenvalues satisfy

c4R
−2
z ≤ λi1 , . . . , λid ≤ c5R

−2
z .

Remark 1.1. The dependence on the constant CWeyl,Ω is only needed
in the Neumann case.

1.2. Manifolds with Cα metric. The results above can be extended
to certain classes of manifolds. In order to formulate a result corre-
sponding to Theorem 1.1 we must first carefully define the manifold
analogue of dist(z, ∂Ω). Let M be a smooth, d-dimensional compact
manifold, possibly with boundary. Suppose we are given a metric ten-
sor g on M which is Cα for some α > 0. For any z0 ∈ M, let (U, υ) be
a coordinate chart such that z0 ∈ U and:

(i) gil(υ(z0)) = δil;
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(ii) for any x ∈ U , and any ξ, ν ∈ R
d,

(1.6)

cmin(g)||ξ||2
Rd ≤

d
∑

i,j=1

gij(υ(x))ξiξj

d
∑

i,j=1

gij(υ(x))ξiνj ≤ cmax(g)||ξ||Rd ||ν||Rd .

We let rM(z0) = sup{r > 0 : Br(υ(z0)) ⊆ υ(U)}. Observe that,
when g is at least C2, rM can be taken to be the inradius, with local
coordinate chart given by the exponential map at z. We denote by
‖g‖α∧1 the maximum over all i, j of the α ∧ 1-Hölder norm of gij in the
chart (U, υ). The natural volume measure dµ on the manifold is given,
in any local chart, by

√
det g; conditions (1.6) guarantee that detg is

uniformly bounded below from 0. Let ∆M be the Laplace Beltrami
operator on M. In a local chart, we have

(1.7) ∆Mf(x) = − 1√
det g

∑

i,j=1

∂j

(

√

det g gij(υ(x))∂if
)

(υ(x)) .

where (gij) is the inverse of gij. Conditions (1.6) are the usual uniform
ellipticity conditions for the operator (1.7). With Dirichlet or Neu-
mann boundary conditions, ∆M is self-adjoint on L2(M, µ). We will
assume that the spectrum is discrete, denote by 0 ≤ λ0 ≤ · · · ≤ λj ≤
its eigenvalues and by {ϕj} the corresponding orthonormal basis of
eigenfunctions, and write equations (1.1) and (1.2) with Ω replaced by
M.

Theorem 1.2. Let (M, g), z ∈ M and (U, υ) be as above. Also, assume
|M| = 1. There are constants c1, . . . , c6 > 0, depending on d, cmin,
cmax, ||g||α∧1, α ∧ 1, and CWeyl,M, such that the following hold. Let

Rz = rM(z). Then there exist i1, . . . , id and constants c6R
d
2
z ≤ γ1 =

γ1(z) , ..., γd = γd(z) ≤ 1 such that:

(a) the map

Φ : Bc1Rz
(z) → R

d(1.8)

x 7→ (γ1ϕi1(x), . . . , γdϕid(x))(1.9)

such that for any x1, x2 ∈ B(z, c1Rz)

(1.10)
c2

Rz
dM(x1, x2) ≤ ||Φ(x1) − Φ(x2)|| ≤

c3

Rz
dM(x1, x2) .

(b) the associated eigenvalues satisfy

c4R
−2
z ≤ λi1 , . . . , λid ≤ c5R

−2
z .
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Remark 1.2. The constant CWeyl,M is only needed in the Neumann
case.

Remark 1.3. Most of the proof is done on one local chart containing
z which we choose (one which contains a large enough ball around z).
An inspection of the proof shows that we use only the norm ‖g‖α∧1 of
the g restricted to this chart. In particular, the Theorem holds also for
Rz ≤ rM(z).

Remark 1.4. When rescaling Theorem 1.2, it is important to note that
if f is a Hölder function with ‖f‖Cα∧1 = A and fr(z) = f(r−1z) then
‖fr‖Cα∧1 = Arα∧1. Since we will have r < 1, fr satisfies a better Hölder
estimate then f , i.e. ‖fr‖Cα∧1 = Arα∧1 ≤ A = ‖f‖Cα∧1.

Remark 1.5. We do not know, in both Theorem 1.1 and Theorem 1.2,
whether it is possible to choose eigenfunctions such that γ1 = ... = γd.

Another result is true. One may replace the d chosen eigenfunctions
above by d chosen heat kernels, i.e. {Kt(z, yi)}i=1,...,d. In fact such heat
kernels arise naturally in the main steps of the proofs of Theorem 1.1
and Theorem 1.2. This leads to an embedding map with even stronger
guarantees:

Theorem 1.3 (Heat Triangulation Theorem). Let (M, g), z ∈ M and
(U, υ) be as above, where we now allow |M| = +∞. Let Rz ≤
min{1, rM(z)}. Let p1, ..., pd be d linearly independent directions. There
are constants c1, . . . , c6 > 0, depending on d, cmin, cmax, ||g||α∧1, α ∧ 1,
and the smallest and largest eigenvalues of the Gramian matrix (〈pi, pj〉)i,j=1,...,d,
such that the following holds. Let yi be so that yi − z is in the direc-
tion pi, with c4Rz ≤ dM(yi, z) ≤ c5Rz for each i = 1, . . . , d and let
tz = c6R

2
z. The map Φ : Bc1Rz

(z) → R
d, defined by

(1.11) x 7→ (Rd
zKtz(x, y1)), . . . , R

d
zKtz(x, yd))

satisfies, for any x1, x2 ∈ Bc1Rz
(z),

c2

Rz
dM(x1, x2) ≤ ||Φ(x1) − Φ(x2)|| ≤

c3

Rz
dM(x1, x2) .

This holds for the manifold and Euclidean case alike, and depends
only on estimates for the heat kernel and its gradient.

Remark 1.6. One may replace the (global) heat kernel above with a
local heat kernel, i.e. the heat kernel for the ball B(z, Rz) with the
metric induced by the manifold and Dirichlet boundary conditions. In
fact, this is a key idea in the proof of all of the above theorems.
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Remark 1.7. All Theorems hold for more general boundary conditions.
This is especially true for the Heat Triangulation Theorem, which does
not even depend on the existence of a spectral expansion for the heat
kernel.

Example 1.1. It is a simple matter to verify this theorem for the case
where the manifold in R

d. For example if d = 2, Rz = 1, and z = 0,
y1 = (−1, 0) and y2 = (0,−1). Then if Kt(x, y) is the Euclidean heat
kernel,

x → (K1(x, y1), K1(x, y2))

is a (nice) biLipschitz map on B 1

2

((0, 0)). (The result for arbitrary

radii then follows from a scaling argument). This is because on can

simply evaluate the heat kernel Kt(x, y) = 1
4πt

e−
|x−y|2

4t . In B 1

2

((0, 0)),

∇K1(x, y1) ∼
1

2π
e−

1

4 (1, 0) and ∇K1(x, y2) ∼
1

2π
e−

1

4 (0, 1) .

Notation. In what follows, we will write f(x) .c1,...,cn
g(x) if there

exists a constant C depending only on c1, . . . , cn, and not on f, g or x,
such that f(x) ≤ Cg(x) for all x (in a specified domain). We will write
f(x) ∼c1,...,cn

g(x) if both f(x) .c1,...,cn
g(x) and g(x) .c1,...,cn

f(x). We

will write a ∼C2

C1
b for a, b vectors, if ai ∼C2

C1
bi for all i.

2. The Proofs

The proofs in the Euclidean and manifold case are similar. In this
section we present the main steps of the proof. A full presentation is
given in [10]. Some remarks about the manifold case:

(a) As mentioned in Remark 1.3, we will often restrict to working
on a single (fixed!) chart in local coordinates. When we discuss
moving in a direction p, we mean in the local coordinates.

(b) Let us say a few words about how the dependence on ‖g‖α∧1

comes into play. Generally speaking, in all places except one
(which we will mention momentarily), the α ∧ 1-Hölder condi-
tion is used to get local bi-Lipschitz bounds on the perturbation
of the metric (resp. the ellipticity constants) from the Euclidean
metric (resp. the Laplacian). The place where one really uses
the Hölder condition is an estimate on how much the gradient
of a (global) eigenfunction changes in a ball.

(c) We will use Brownian motion arguments (on the manifold). In
order to have existence and uniqueness one needs smoothness
assumptions on the metric (say, C2).Therefore we will first prove
the Theorem in the manifold case in the C2 metric category, and
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then use perturbation estimates to obtain the result for gij ∈ Cα.
To this end, we will often have dependence on the Cα norm of
the coordinates of the gij even though we will be (for a specific
lemma or proposition) assuming the g has C2 entries.

(d) We will use estimates from [8]. The theorems in [8] are stated
only for the case of d ≥ 3. Our theorems are true also for the
case d = 2 (and trivially , d = 1). This can be seen indirectly

by considering M̃ := M×T and noting that the eigenfunctions
of M̃ and the heat kernel of M̃ both factor.

The idea of the proof of Theorems 1.1 and 1.2 is as follows. We start
by fixing a direction p1 at z. We would like to find an eigenfunction
ϕi1 such that |∂p1

ϕi1| & R−1
z on Bc1Rz

(z). In order to achieve this, we
start by showing that the heat kernel has large gradient in an annulus
of inner and outer radius ∼ R−1

z around y1 (y1 chosen such that z is
in this annulus, in direction p1). We then show that the heat kernel
and its gradient can be approximated on this annulus by as the partial
sum of (1.1) over eigenfunctions ϕλ which satisfy both λ ∼ R−2

z and

R
− d

2
z ||ϕλ||L2(Bc1Rz (z)) & 1. By the pigeon-hole principle, at least one

such eigenfunction, let it be ϕi1, has a large partial derivative in the
direction p1. We then consider ∇ϕi1 and pick p2 ⊥ ∇ϕi1 and by induc-
tion we select ϕi1 , . . . , ϕid, making sure that at each stage we can find
ϕik , not previously chosen, satisfying |∂pk

ϕik | ∼ R−1
z on Bc1Rz

(z). We
finally show that the Φ := (ϕi1, ..., ϕid) satisfies the desired properties.

Step 1. Estimates on the heat kernel and its gradient. Let
K be the Dirichlet or Neumann heat kernel on Ω or M, corresponding
to one of the Laplacian operators considered above associated with g.
We have the spectral expansion

Kt(x, y) =

+∞
∑

j=0

e−λj tϕj(x)ϕj(y) .

When working on a manifold, we can assume in what follows that
we fix a local chart containing BRz

(z).

Assumption A.1. Let the constants δ0, δ1 > 0 depend on d, cmin,
cmax, ||g||α∧1, α ∧ 1.We consider z, w ∈ Ω satisfying δ1

2
Rz < t

1

2 < δ1Rz

and |z − w| < δ0Rz.

Proposition 2.1. Under Assumption A.1, let g ∈ Cα, δ0 sufficiently
small, and δ1 is sufficiently small depending on δ0. Then there are
constants C1, C2, C ′

1, C ′
2, C9 > 0, that depend on d, δ0, δ1, cmin, cmax,

||g||α∧1, α ∧ 1} and C ′
1, C ′

2, C9 dependent also on CWeyl, such that the
following hold:
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(i) the heat kernel satisfies

Kt(z, w) ∼C2

C1
t
−d
2 ;(2.1)

(ii) if 1
2
δ0Rz < |z − w|, p is a unit vector in the direction of z − w,

and q is arbitrary unit vector, then

(2.2) |∇Kt(z, w)| ∼C′
2

C′
1

t
−d
2

Rz

t
and |∂pKt(z, w)| ∼C′

2

C′
1

t
−d
2

Rz

t

(2.3)

∣

∣

∣

∣

∂qKt(z, w) − C ′
2〈q,

z − w

||z − w||〉t
−d
2

Rz

t

∣

∣

∣

∣

≤ C9t
−d
2

Rz

t
,

where C9 → 0 as δ1 → 0 (with δ0 fixed);
(iii) if in addition gij ∈ C2, 1

2
δ0Rz < |z −w|, and q is as above, then

for s ≤ t,

(2.4)
Ks(z, w) .C2

t
−d
2 , |∇Ks(z, w)| .C′

2
t
−d
2

Rz

t
and

|∂qKs(z, w)| .C′
2

t
−d
2

Rz

t
;

(iv) C1, C2 both tend to a single function of {d, cmin, cmax, δ0, CWeyl},
as δ1 tends to 0 with δ0 fixed;

(v) if g ∈ C2, then also C ′
1, C

′
2, C9 can be chosen independently of

CWeyl. Furthermore, the above estimates also hold for |M| ≤
+∞.

At this point we can side track and choose heat kernels {Kt(·, yi)}i=1,...,d,
with t ∼ R2

z, that provide a local coordinate chart with the properties
claimed in the Theorem 1.3:

Proof of Theorem 1.3. We start with the case g ∈ C2. Let us consider
the Jacobian J̃(x), for x ∈ Bc1Rz

(z), of the map

Φ̃ := R−d
z t+d/2(t/R2

z)Φ .

By (2.3) we have |J̃ij(x) − C ′
2〈pi,

x−yj

||x−yj ||
〉R−1

z | ≤ C9R
−1
z , with C ′

2 inde-

pendent of CWeyl. As dictated by Proposition 2.1, by choosing δ0, δ1

appropriately (and, correspondingly, c1 and c6), we can make the con-
stant C9 smaller than any chosen ε, for all entries, and for all x at
distance no greater than c1Rz from z, where we use t = tz = c6R

2
z

for Φ̃. Therefore for c1 small enough compared to c4 we can write
RzJ̃(x) = Gd + E(x) where Gd is the Gramian matrix 〈pi, pj〉 (in-
depedent of x), and |Eij(x)| < ε, for x ∈ Bc1Rz

(z). This implies that

R−1
z (σmin−Cdε)||v|| ≤ ||J̃(x)v|| ≤ R−1

z (σmax+Cdε)||v||, with Cd depend-
ing linearly on d, where σmax and σmin are the largest and, respectively,
smallest eigenvalues of Gd. At this point we choose ε small enough, so
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that the above bounds imply that the Jacobian is essentially constant
in Bc1Rz

(z), and by integrating along a path from x1 to x2 in Bc1Rz
(z),

we obtain the Theorem (Φ and Φ̃ differ only by scalar multiplication).
We note that ε ∼ 1

d
suffices. To get the result when g is only Cα we use

perturbation techniques for the heat kernel [10]. �
We proceed towards the proof of Theorem 1.1 and 1.2. The follow-

ing steps aim at replacing appropriately chosen heat kernels by a set
of eigenfunctions, by extracting the “leading terms” in their spectral
expansion.

Step 2. Heat kernel and eigenfunctions. Let Avez
R(f) =

(
�
BR(z)

|f |2) 1

2 . We record the following [10]:

Proposition 2.2. Assume gij ∈ Cα. There exists b1 < 1, that depends
on d, cmin, cmax, ||g||α∧1, α ∧ 1 such that the following holds. For an
eigenfunction ϕj of ∆M, corresponding to the eigenvalue λj, and R ≤
Rz, the following estimates hold. For w ∈ Bb1R(z) and x, y ∈ Bb1R(z),

|ϕj(w)| . P1(λjR
2)Avez

R(ϕj)

||∇ϕj(w)|| . R−1 P2(λjR
2) Avez

R(ϕj)

||∇ϕj(x) −∇ϕj(y)||
||x − y||α∧1

. R−1−α∧1 P3(λjR
2) Avez

R(ϕj)

with constants depending only on d, cmax, cmin, ||gij||α∧1, and P1(x) =

(1+x)
1

2
+β, P2(x) = (1+x)

3

2
+β, P3(x) = (1+x)

5

2
+β, with β the smallest

integer larger than or equal to d−2
4

.

We start by restricting our attention to eigenfunctions which do not
have too high frequency. Let ΛL(A) = {λj : λj ≤ At−1} and ΛH(A′) =
{λj : λj > A′t−1} = ΛL(A′)c.

A first connection between the heat kernel and eigenfunctions is given
by the following truncation Lemma.

Lemma 2.3. Assume g ∈ C2. Under Assumption A.1, for A > 1 large
enough and A′ < 1 small enough, depending on δ0, δ1, C1, C2, C

′
1, C

′
2 (as

in Proposition 2.1), there exist constants C3, C4 (depending on A, A′

as well as { d, cmin, cmax, ||g||α∧1, α ∧ 1}) such that:

(i) The heat kernel is approximated by the truncated expansion

Kt(z, w) ∼C4

C3

∑

j∈ΛL(A)

ϕj(z)ϕj(w)e−λjt .

(ii) If 1
2
δ0Rz < |z −w| and p is a unit vector parallel to z −w, then

∇wKt(z, ·) ∼C4

C3

∑

j∈ΛL(A)∩ΛH(A′)

ϕj(z)∇wϕj(·)e−λjt
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∂pKt(z, ·) ∼C4

C3

∑

j∈ΛL(A)∩ΛH(A′)

ϕj(z)∂pϕj(·)e−λj t .

(iii) C3, C4 both tend to 1 as A → ∞ and A′ → 0.

This lemma implies that in the heat kernel expansion we do not
need to consider eigenfunctions corresponding to eigenvalues larger
than At−1. However, in our search for eigenfunctions with the de-
sired properties, we need to restrict our attention further, by discarding
eigenfunctions that have too small a gradient around z. As a proxy for
gradient, we use local energy. Recall Avez

R(f) = (
�
BR(z)

|f |2) 1

2 , and let

ΛE(z, Rz, δ0, c0) :=
{

λj ∈ σ(∆) : Avez
1

2
δ0Rz

(ϕj) ≥ c0

}

.

The truncation Lemma 2.3 can be strengthened into

Lemma 2.4. Assume g ∈ C2. Under Assumption A.1, for C3, C4 close
enough to 1 (as in Lemma 2.3), and c0 small enough (depending on d,
cmin, cmax, ||g||α∧1, α ∧ 1, and
CWeyl,M), there exist constants C5, C6 (depending only on C3, C4, c0,
and CWeyl,M) such that the heat kernel satisfies

Kt(z, w) ∼C6

C5

∑

λj∈ΛL(A)∩ΛE(z,Rz ,δ0,c0)

ϕj(z) ϕj(w) e−λjt

and if 1
2
δ0Rz < |z−w|, then, if Λ := ΛL(A)∩ΛH(A′)∩ΛE(z, Rz, δ0, c0),

∂pKt(z, w) ∼C6

C5

∑

λj∈Λ

ϕj(z) ∂pϕj(w) e−λjt .

C5, C6 tend to 1 as C3, C4 tend to 1 and c0 tends to 0.

Step 3. Choosing appropriate eigenfunctions.

The set of eigenfunctions with eigenvalues in Λ (as in Lemma 2.4) is
well-suited for our purposes, in view of:

Lemma 2.5. Assume g ∈ C2. Under Assumption A.1, for δ0 small
enough, there exists a constant C7 depending on {C1, C2, C

′
1, C

′
2, C5, δ1}

and C8 depending on { δ0, cmin, cmax, ||g||α∧1, α ∧ 1} such that the
following holds. For any direction p there exist j ∈ Λ := ΛL(A) ∩
ΛH(A′) ∩ ΛE(z, Rz, δ0, c0) such that

|∂pϕj(z)| ∼C8

C7
R−1

z Avez
1

2
δ0Rz

ϕj ,

and moreover, if ||z−z′|| ≤ b1Rz, where b1 is a constant which depends
on C7, C8, d, cmin, cmax, ||g||α∧1, α ∧ 1, then

|∂pϕj(z
′)| ∼C8

C7
R−1

z Avez
1

2
δ0Rz

ϕj .
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This Lemma yields an eigenfunction that serves our purpose in a
given direction. To complete the proof of the Theorems, we need to
cover d linearly independent directions. Pick an arbitrary direction p1.
By Lemma 2.5 we can find j1 ∈ Λ, (in particular j1 ∼ t−1) such that
|∂p1

ϕj1(z)| ≥ c0R
−1
z . Let p2 be a direction orthogonal to ∇ϕj1(z). We

apply again Lemma 2.5, and find j2 < At−1 so that |∂p2
ϕj2(z)| ≥ c0R

−1
z .

Note that necessarily j2 6= j1 and p2 is linearly independent of p1. In
fact, by choice of p2, ∂p2

ϕj1 = 0. We proceed in this fashion. By in-
duction, once we have chosen j1, . . . , jk (k < d), and the corresponding
p1, . . . , pk, such that |∂pl

ϕjl
(z)| ≥ c0R

−1
z , for l = 1, . . . , k, we pick pk+1

orthogonal to 〈{∇ϕjn
}n=1,...,k〉 and apply Lemma 2.5, that yields jk+1

such that
∣

∣∂pk+1
ϕjk+1

(z)
∣

∣ ≥ c0R
−1
z .

We claim that the matrix Ak+1 := (∂pn
ϕjm

)m,n=1,...,k+1 is lower trian-

gular and {p1, . . . , pk+1} is linearly independent. Lower-triangularity
of the matrix follows by induction and the choice of pk+1. Assume

a ∈ R
k+1 and

∑k+1
n=1 anpn = 0, then 〈

∑k+1
n=1 anpn,∇ϕjl

〉 = 0 for all
l = 1, . . . , k + 1, i.e. a solves the linear system Ak+1a = 0. But Ak+1 is
lower triangular with all diagonal entries non-zero, hence a = 0.

For l ≤ k we have 〈∇ϕjl
, pk+1〉 = 0 and, by Lemma 2.5, |〈∇ϕjl

, pl〉| &
R−1

z . Now let Φk = (ϕj1, . . . , ϕjk
) and Φ = Φd. We start by showing

that ||∇Φ|z(w− z)|| &d
1

Rz
||w− z||. Indeed, suppose that ||∇Φk|z(w−

z)|| ≤ c
Rz
||w−z||, for all k = 1, . . . , d. For c small enough, this will lead

to a contradiction. Let w − z =
∑

l alpl. We have (using say Lemma
2.5)

||∇Φk|z(w − z)|| = ||
∑

l≤k

al∂pl
Φk|z|| &

(

|ak| − c
∑

l<k

|al|
)

1

Rz
.

By induction, |ak| ≤
∑k

l=1 cl||w− z||. For c small enough, |ai| ≤ ||w−z||
d

.
This is a contradiction since ||∑i aipi|| = ||w − z|| and ||pi|| = 1. We
also have, by Proposition 2.2,

(2.5) ||∇Φ|w −∇Φ|z|| .

( ||z − w||
Rz

)α∧1
1

Rz
.
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Finally, by ensuring ||z−wi||
Rz

is smaller then a universal constant for

i = 1, 2, we get from equation (2.5)

||Φ(w1) − Φ(w2)|| =

∣

∣

∣

∣

� 1

0

∇Φ|tw1+(1−t)w2
(w1 − w2)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

� 1

0

(

∇Φ|w1
+
(

∇Φ|tw1+(1−t)w2
−∇Φ|w1

))

(w1 − w2)dt

∣

∣

∣

∣

&

� 1

0

1

Rz
||w1 − w2||dt &

1

Rz
c0||w1 − w2|| ,

which proves the lower bound (1.5). To prove the upper bound of
(1.5), we observe that from Proposition 2.2 we have the upper bound
|∂pl

ϕil(z)| . Avez
Rz

(ϕil), and since ϕil is L2-normalized, the right hand

side can be as big as ∼ R
− d

2
z . Therefore we can choose γl as in the

statement of the Theorem so as to satisfy the upper bound (1.5). This
completes the proof for the Euclidean case.

In the manifold case, we consider first the case g ∈ C2, and thus let
α ∧ 1 = 1 in what follows. Let Rz be as in the Theorem. We take
c1 ≤ 1

2
δ0 chosen so that

|gil(x) − δil| = |gil(x) − gil(z)| < ||g||α∧1||x − z||α∧1 < ε0

for all x ∈ B2c1Rz
(z). For this g, the above is carried on in local

coordinates. It is then left to prove that the Euclidean distance in the
range of the coordinate map is equivalent to the geodesic distance on
the manifold. For all x, y ∈ Bc1Rz

(z)

dM(x, y) ≤
� 1

0

∥

∥

∥

∥

x − y

||x − y||

∥

∥

∥

∥

Rd

(1 + ‖g‖α∧1t
α∧1)dt

.α∧1 (1 + ‖g‖α∧1) ||x − y|| .
For the converse, let γ : [0, 1] → M be the geodesic from x to y. γ
is contained in B2dM(x,y)(x) on the manifold, whose image in the local
chart is contained in B2(1+‖g‖α∧1)dM(x,y)(x). We have

dM(x, y) & (1 − ‖g‖α∧1)

�
γ

||γ̇(t)||Rd & (1 − ‖g‖α∧1)||x − y|| .

Finally, when g ∈ Cα we will need:

Lemma 2.6. Let J > 0 be given. If ‖g̃il
n − gil‖L∞(BR(z)) →n 0 with

‖g̃il
n‖Cα uniformly bounded, then for j < J

‖ϕj − ϕ̃j,n‖L∞(BR(z)) →n 0 ,

‖∇(ϕj − ϕ̃j,n)‖L∞(BR(z)) →n 0 , |λj − λ̃j,n| →n 0 .
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Figure 1. A non-simply connected domain in R
2, the dark

circle is the neighborhood to be mapped, and color represents
two (left and right) eigenfunctions for the embedding. Each
of them has about half an oscillation in the neighborhood,
and these two half-oscillations are in roughly orthogonal di-

rections.

To conclude the proof of the Theorem, let J = c5R
−2
z , depending

on d, 1
2
cmin, 2cmax, ||g||α∧1, α ∧ 1. We may approximate g in Cα norm

arbitrarily well by a C2(M) metric. By the above lemma, and our main
Theorem for the case of C2 metric, we obtain the Theorem for the Cα

case. �

3. Examples

Example 3.1. Mapping with eigenfunctions, non simply-connected

domain. We consider the planar, non-simply connected domain Ω in
Figure 1. We fix a point z ∈ Ω, as in the figure, and display two
eigenfunctions whose existence is implied by Theorem 1.1.

Example 3.2. Localized eigenfunctions 4. In this example we show
that the factors γ1, . . . , γd in Theorems 1.1 and 1.2 may in fact be re-

quired to be as small as R
d
2
z . We consider the “two-drums” domain in

Figure 2, consisting of a unit-size square drum, connected by a small
aperture to a small square drum, with size τ/N , where τ is the golden
ratio. The with of the connecting aperture is δτ/N , for small δ. For
this domain, for small enough δ, and for z in the smaller square, it can
be shown that all possible eigenfunctions that may get chosen in the
Theorem are localized in the smaller square This is essentially a con-
sequence of the fact that the proper frequencies of the two drums, for
δ = 0, are all irrational with respect to each other, and therefore eigen-
functions are perfectly localized on each drum. For δ small enough,
a perturbation argument shows that the eigenfunctions will be essen-
tially localized on each drum. But the eigenfunctions localized on the

4We refer the reader to http://pmc.polytechnique.fr/pagesperso/dg/

recherche/localization e.htm for related comments and pictures.
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1

τ
N

δτ
N

Figure 2. Example of localization. When the entrance
in the room is small enough, all the eigenfunctions that
Theorem 1.1 selects for mapping a neighborhood of a
point z in the small room need to be rescaled by a factor

R
−d/2
z in order to map a neighborhood of z to a ball of

size ∼ 1.

small drum, being normalized to L2 norm, will have L∞ norm as large

as R
− d

2
z , and therefore the lower bound for the γi’s is sharp.
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