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Singular Sets and Regular Sets

• Common theme in analysis, take an object and divide it into a
“regular set” and a “singular set.”

• Hopefully “regular” set has smoothness and is relatively “large”

• Singular set should be relatively small and have structure.

Example (Minimal Hypersurfaces)

Area Minimizing Hypersurfaces: regular part ∪ singular part. The regular
set is analytic. dim singular set ≤ n − 7. Furthermore, is contained in a
countable union of dimension ≤ n − 7 Lipschitz submanifolds.

Plethora of other examples: zero sets of solutions to elliptic PDE
(Cheeger-Naber-Valtorta ’15), support of uniform measures (Nimer ’15),
solutions to the thin obstacle problem (Garofalo-Petrosyan ’09).
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How is this usually accomplished?

Traditional ingredients:

• Monotonicity formula

• Uniqueness of blowups (tangents)

• Control on rate of blowup (tangent)

What if you don’t know any of the above?

New Approach: (Badger-Lewis ’15 (inspired by Preiss ’87)) If you know
all the possible (pseudo-) blowups of A, then understanding how these sets
“fit together” can give information about A.

Use this to understand two-phase problem for harmonic measure.
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What is Harmonic Measure?

Intuitively, ωX (E ) is how much a harmonic function “sees” E .
Ex: For the unit disc ω0 = σ

2π . All points of the circle look identical.

Harmonic measure at X .

Credit Wikipedia

Given
f ∈ C (∂Ω). ∃Uf ∈ C 2(Ω) ∩ C (Ω) which satisfies:

∆Uf (x) = 0, x ∈ Ω

Uf (x) = f (x), x ∈ ∂Ω.

For X ∈ Ω the harmonic
measure ωX is the Borel measure such that:ˆ
∂Ω

f (Q)dωX (Q) = Uf (X ).

Maximum principle, ⇒ ωX is a probability measure.
Harnack inequality ⇒ ωX << ωY << ωX . Will omit dependence on pole.
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Two-phase Free Boundary Problems

Ω± disjoint, NTA (”quantitatively connected”) domains with ω± harmonic
measures. Ω+ ∪ Ω− = Rn. Also Γ ≡ ∂Ω+ = ∂Ω−.

Figure: A typical two-phase setup. Picture by Matthew Badger

Assume ω+ << ω− << ω+ on Γ. Let h := dω−

dω+ .

Question: What does the regularity of h tells us about Γ?

Prior work: Kenig-Toro ’06, Kenig-Preiss-Toro ’09, Badger ’11 ’12 ’13, E.
’14, Azzam-Mourgoglou-Tolsa ’16.

Ω ⊂ R2, use complex analysis (Garnett and Marshall (chpt 6)).
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What are NTA domains?

Jerison and Kenig ’82 (quantitatively open and path connected):

Figure: The Corkscrew and Harnack Chain Conditions. Figures from
Campogna, Kenig and Lanzani 2005

Picture Courtesy of Matthew Badger
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Blowup Analysis

KEY IDEA: Understand the (pseudo)-blowups of Γ.

Definition ((Pseudo)-Blowups)

A set, C , is a pseudo-blowup of Γ if there exists Qi ∈ Γ, ri ↓ 0 such that

Γ− Qi

ri
≡ Γi → C .

If Qi ≡ Q, call it a blowup.

Figure: Blowing up at a point. Picture courtesy of Matthew Badger.

IMPORTANT: May be multiple blowups at a point (for different {ri}).
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Blowups of the Two-Phase Problem

Theorem (Kenig-Toro ’06)

Let Ω± ⊂ Rn be complementary NTA with log(h) ∈ VMO(dω+) (almost
continuous) then every pseudo-blowup of Γ is actually the zero set of a
degree ≤ d0 harmonic polynomial, p.

• d0 depends on ambient dimension, NTA constants.
• {p > 0} and {p < 0} are connected (actually NTA).
• p depends on Qi , ri in the pseudo-blowup (not unique given a Q ∈ Γ!)

h(X ) = x2
1 + x2

2 − x2
3 − x2

4 is a harmonic polynomial s.t. {h > 0} and {h < 0} are NTA. Credit: Mathematica
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The Main Theorem

Theorem (Main Theorem, Badger-E.-Toro (’15))

Let Ω± ⊂ Rn be complementary NTA domains and assume
log(dω

−

dω+ ) ∈ VMO(dω+). ∃d0 ∈ N s.t. Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γd0 , where:

• If Q ∈ Γk , then any blowup of Γ at Q is the zero set of a degree k
homogenous harmonic polynomial (not necessarily unique!).

• dimMΓ\Γ1 ≤ n − 3. Γ\Γ1 is the singular set.

• For any k ≤ d0: Γ1 ∪ Γ2 ∪ . . . ∪ Γk . is open inside of Γ

• For any k ≤ d0/2: dimH Γ2 ∪ Γ4 ∪ . . . ∪ Γ2k ≤ n − 4.

These two examples x2
1 + x2

2 − x2
3 − x2

4 and x2
1 (x2 − x3) + x2

2 (x3 − x1) + x2
3 (x1 − x2) + x1x2x3 show that the above

dimension bounds are sharp. Credit: Mathematica and M. Badger
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Method of Proof

Kenig-Toro ’06: all of the pseudo-blowups are zero sets of homogenous
harmonic polynomials which split space into two NTA components.

Badger-Lewis ’15: main theorem follows if:

• Detectability: Let k ≤ ` and C , δ > 0 be uniform constants. If p, h
are harmonic polynomials of degree k , `, respectively,
{p = 0} ∩ B(x , r) is within δr of {h = 0} ∩ B(x , r), then for every
s ∈ (0, 1) there is a degree k polynomial, ps , such that
{ps = 0} ∩ B(x , rs) is within Crs1+1/k of {h = 0} ∩ B(x , rs).

• If you are close to a degree k polynomial at one scale, you get closer at
smaller scales. (“improvement of flatness”-type result)

• Dimension Estimates: for every δ > 0, ∃C > 0 such that for all
harmonic polynomials, p, of degree ≤ d0,

Vol({x ∈ B(0, 1/2) | p(x) = 0,dist(x ,S(p)) < r}) ≤ Cr3−δ,

where S(p) = {x0 | p(x0) = 0 = Dp(x0)}, is the singular set of p.
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Proof of Detectability

• Key Tool:  Lojasiewicz inequality. Need to understand how harmonic
polynomials grow near the zero set.

• ∃c > 0 such that if x0 ∈ B(0, 1) and q is a degree k harmonic
polynomial, then

q(x0) ≥ c‖q‖L∞(B(0,1))dist(x0, {q = 0})k . (1)

• Let p be a degree ` harmonic polynomial. When q is the first k terms
of the Taylor series of p around x0, then (1) controls the geometry of
{p = 0} near x0 by the geometry of {q = 0}.

• Compactness argument shows that if {p = 0} is very close to some
degree k harmonic polynomial, then it must be near the first k terms
of its Taylor series.
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Singular Points in Harmonic Polynomials

Theorem (Cheeger-Naber-Valtorta ’15)

If u : B(0, 1)→ R is a harmonic function with u(0) = 0 and´
B(0,1) |∇u|

2dx´
∂B1

u2 dσ
≤ Λ, then for every η > 0 and k ≤ n − 2,

Vol({x ∈ B(0, 1/2) | dist(x ,Skη,r (u))}) ≤ C (n,Λ, η)rn−k−η.

• Skη,r (u) are the points at which u “depends” on more than n − k
variables at small scales (i.e. has k or more translational symmetries).

• “Regular points” depend on only one direction at infinitesimal scales.
So if k < n − 1 we are looking at singular points.
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Some Open Questions/Future Work

1 Ongoing work: what if log(dω
−

dω+ ) ∈ C 0,α?
• We can prove uniqueness of blowup.

• Singular sets are contained in countable union of dimension ≤ n − 3
C 1,β-submanifolds.

• Mixes approach above with monotonicity formulae.
• Still don’t know if singular set fills out the manifolds.
• Can we give local parameterizations around points Q ∈ Γk?

2 log(dω
−

dω+ ) ∈ C 0

• Does the regular set have locally finite measure (connected to
aforementioned work of Azzam-Mourgoglou-Tolsa ’16)

3 log(dω
−

dω+ ) ∈ VMO
• Unique blowups at points?
• Is Γk closed?
• We need to understand better the zero sets of harmonic polynomials

which split space into two NTA components.
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Thanks!

Thank You For Listening!
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