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Circle domains

Definition

A domain Ω in the Riemann sphere Ĉ is a circle domain if every
connected component of its boundary is either a round circle or a
point.
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Circle domains

Definition

A domain Ω in the Riemann sphere Ĉ is a circle domain if every
connected component of its boundary is either a round circle or a
point.
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The boundary of any circle domain contains at most
countably many circles.
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The Koebe Uniformization Conjecture

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.
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Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.
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The Koebe Uniformization Conjecture

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.

The conjecture is true if D

has finitely many boundary components (Koebe, 1918)
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The Koebe Uniformization Conjecture

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.

The conjecture is true if D

has finitely many boundary components (Koebe, 1918)

has countably many boundary components (He–Schramm,
1993).
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Uniqueness of the Koebe map
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Uniqueness of the Koebe map
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.
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Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918)
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918)

it has countably many boundary components (He–Schramm,
1993)
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918)

it has countably many boundary components (He–Schramm,
1993)

it has σ-finite length boundary (He–Schramm, 1994).
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Conformally removable sets

Definition

Let E ⊂ C be compact.
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Conformally removable sets

Definition

Let E ⊂ C be compact.
We say that E is conformally removable if every homeomorphism
of Ĉ which is conformal outside E is actually conformal everywhere
(hence is a Möbius transformation).
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Conformally removable sets

Definition

Let E ⊂ C be compact.
We say that E is conformally removable if every homeomorphism
of Ĉ which is conformal outside E is actually conformal everywhere
(hence is a Möbius transformation).

Removable : sets of σ-finite length, quasicircles, Hölder curves
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Conformally removable sets

Definition

Let E ⊂ C be compact.
We say that E is conformally removable if every homeomorphism
of Ĉ which is conformal outside E is actually conformal everywhere
(hence is a Möbius transformation).

Removable : sets of σ-finite length, quasicircles, Hölder curves

Non-removable : sets of positive area
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Conformally removable sets

Definition

Let E ⊂ C be compact.
We say that E is conformally removable if every homeomorphism
of Ĉ which is conformal outside E is actually conformal everywhere
(hence is a Möbius transformation).

Removable : sets of σ-finite length, quasicircles, Hölder curves

Non-removable : sets of positive area

There exist removable sets of Hausdorff dimension two and
non-removable sets of Hausdorff dimension one
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Conformally removable sets

Definition

Let E ⊂ C be compact.
We say that E is conformally removable if every homeomorphism
of Ĉ which is conformal outside E is actually conformal everywhere
(hence is a Möbius transformation).

Removable : sets of σ-finite length, quasicircles, Hölder curves

Non-removable : sets of positive area

There exist removable sets of Hausdorff dimension two and
non-removable sets of Hausdorff dimension one

The complement of any non-removable Cantor set is a
non-rigid circle domain.
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Rigidity conjecture

Conjecture (He–Schramm 1994)
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain.
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Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;

(B) The boundary of Ω is conformally removable;
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;

(B) The boundary of Ω is conformally removable;

(C) Every Cantor set contained in the boundary of Ω is
conformally removable.
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;

(B) The boundary of Ω is conformally removable;

(C) Every Cantor set contained in the boundary of Ω is
conformally removable.

Remarks :
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;

(B) The boundary of Ω is conformally removable;

(C) Every Cantor set contained in the boundary of Ω is
conformally removable.

Remarks :

(B) ⇒ (C) is trivial
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Rigidity conjecture

Conjecture (He–Schramm 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid;

(B) The boundary of Ω is conformally removable;

(C) Every Cantor set contained in the boundary of Ω is
conformally removable.

Remarks :

(B) ⇒ (C) is trivial

If there are no circles in ∂Ω, then (A) ⇒ (B).
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First Main Theorem

Theorem (Y. (2015))
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First Main Theorem

Theorem (Y. (2015))

Let Ω be a circle domain whose boundary is the union of countably
many circles and countably many totally disconnected compact
sets.
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First Main Theorem

Theorem (Y. (2015))

Let Ω be a circle domain whose boundary is the union of countably
many circles and countably many totally disconnected compact
sets.
Then (B) and (C) are equivalent.
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First Main Theorem

Theorem (Y. (2015))

Let Ω be a circle domain whose boundary is the union of countably
many circles and countably many totally disconnected compact
sets.
Then (B) and (C) are equivalent.

The assumption holds if boundary circles don’t accumulate
too much on point boundary components.
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First Main Theorem

Theorem (Y. (2015))

Let Ω be a circle domain whose boundary is the union of countably
many circles and countably many totally disconnected compact
sets.
Then (B) and (C) are equivalent.

The assumption holds if boundary circles don’t accumulate
too much on point boundary components.

The assumption does not hold if boundary circles accumulate
everywhere.
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A Sierpinski-type circle domain
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Countable unions of certain conformally removable sets

The theorem is a consequence of the following more general result.
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Countable unions of certain conformally removable sets

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))
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Countable unions of certain conformally removable sets

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

E =
∞⋃

j=1

Γj ∪
∞⋃

k=1

Ek ,

where each Γj is a quasicircle and each Ek is a totally disconnected
compact set.
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Countable unions of certain conformally removable sets

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

E =
∞⋃

j=1

Γj ∪
∞⋃

k=1

Ek ,

where each Γj is a quasicircle and each Ek is a totally disconnected
compact set.
Then E is conformally removable if and only if every Ek is
conformally removable.
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Countable unions of certain conformally removable sets

The theorem is a consequence of the following more general result.

Theorem (Y. (2015))

Let E be a compact plane set of the form

E =
∞⋃

j=1

Γj ∪
∞⋃

k=1

Ek ,

where each Γj is a quasicircle and each Ek is a totally disconnected
compact set.
Then E is conformally removable if and only if every Ek is
conformally removable.

Still open whether the union of two conformally removable
sets is conformally removable (Jones–Smirnov, 2000).
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Second Main Theorem

It is not difficult to prove that
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable

quasiconformal mappings of the plane preserve conformally
removable sets.
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable

quasiconformal mappings of the plane preserve conformally
removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable

quasiconformal mappings of the plane preserve conformally
removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.

Corollary
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable

quasiconformal mappings of the plane preserve conformally
removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.

Corollary

Let Ω be a circle domain and let f be a quasiconformal mapping of
the sphere which maps Ω onto another circle domain f (Ω).
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Second Main Theorem

It is not difficult to prove that

a compact set is conformally removable if and only if it is
quasiconformally removable

quasiconformal mappings of the plane preserve conformally
removable sets.

Theorem (Y. (2015))

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.

Corollary

Let Ω be a circle domain and let f be a quasiconformal mapping of
the sphere which maps Ω onto another circle domain f (Ω).
If Ω is conformally rigid, then f (Ω) is also conformally rigid.
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Lemma

Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe’s Conjecture



An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.

Use David’s theorem to obtain a homeomorphism f : Ĉ → Ĉ

belonging to W 1,1
loc with µf := ∂z f /∂z f = µ a.e.

Malik Younsi, Stony Brook University Removability, Rigidity of Circle Domains and Koebe’s Conjecture



An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.

Use David’s theorem to obtain a homeomorphism f : Ĉ → Ĉ

belonging to W 1,1
loc with µf := ∂z f /∂z f = µ a.e.

Deduce that
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.

Use David’s theorem to obtain a homeomorphism f : Ĉ → Ĉ

belonging to W 1,1
loc with µf := ∂z f /∂z f = µ a.e.

Deduce that
f is conformal on Ω
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.

Use David’s theorem to obtain a homeomorphism f : Ĉ → Ĉ

belonging to W 1,1
loc with µf := ∂z f /∂z f = µ a.e.

Deduce that
f is conformal on Ω
f is not the restriction of a quasiconformal mapping of the
whole sphere
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An important lemma

Lemma

If Ω is quasiconformally rigid, then ∂Ω has zero area.

Assume ∂Ω has positive area.

Construct a measurable function µ : Ĉ → D such that
µ = 0 on Ω, ‖µ‖L∞(Ω) = 1

µ satisfies the (strong) David condition :

m({z ∈ Ĉ : |µ(z)| > 1− ǫ}) ≤ Me−βe
α

ǫ (ǫ > 0).
µ is invariant with respect to the Schottky group of Ω.

Use David’s theorem to obtain a homeomorphism f : Ĉ → Ĉ

belonging to W 1,1
loc with µf := ∂z f /∂z f = µ a.e.

Deduce that
f is conformal on Ω
f is not the restriction of a quasiconformal mapping of the
whole sphere
f (Ω) is a circle domain.
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Quasiconformally rigid implies conformally rigid
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Quasiconformally rigid implies conformally rigid

Assume that Ω is quasiconformally rigid, and let f be a conformal
map of Ω onto another circle domain.
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Quasiconformally rigid implies conformally rigid

Assume that Ω is quasiconformally rigid, and let f be a conformal
map of Ω onto another circle domain.

Then f is the restriction of a quasiconformal mapping
g : Ĉ → Ĉ.
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Quasiconformally rigid implies conformally rigid

Assume that Ω is quasiconformally rigid, and let f be a conformal
map of Ω onto another circle domain.

Then f is the restriction of a quasiconformal mapping
g : Ĉ → Ĉ.

Use the fact that ∂Ω has zero area and results of Sullivan on
Kleinian groups to deduce that g is a Möbius transformation.
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THANK YOU!
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