Fractal Convolution Inequalities and Geometric Applications

Krystal Taylor

Stony Brook, March 2016

Krystal Taylor (The Ohio State)

Fractal operators

Stony Brook, March 2016 1 / 9

• Let

$$T_{\lambda}f(x) = \int \lambda(x-y)f(y)dy,$$

where λ is a suitable kernel.

3

2

Let

$$T_{\lambda}f(x) = \int \lambda(x-y)f(y)dy,$$

where λ is a suitable kernel.

• Plancherel tells us: this operator is bounded on $L^2(\mathbb{R}^d)$ iff $\widehat{\lambda} \in L^{\infty}(\mathbb{R}^d).$

Let

$$T_{\lambda}f(x) = \int \lambda(x-y)f(y)dy,$$

where λ is a suitable kernel.

- Plancherel tells us: this operator is bounded on $L^2(\mathbb{R}^d)$ iff $\widehat{\lambda} \in L^\infty(\mathbb{R}^d).$
- In a variety of applications, it is interesting to consider $L^p(\mu) \rightarrow L^p(\nu)$ bounds for

$$T_{\lambda}f(x) = \lambda * (f\mu),$$

where

Let

$$T_{\lambda}f(x) = \int \lambda(x-y)f(y)dy,$$

where λ is a suitable kernel.

- Plancherel tells us: this operator is bounded on $L^2(\mathbb{R}^d)$ iff $\widehat{\lambda} \in L^\infty(\mathbb{R}^d).$
- In a variety of applications, it is interesting to consider $L^p(\mu) \rightarrow L^p(\nu)$ bounds for

$$T_{\lambda}f(x) = \lambda * (f\mu),$$

where

• μ and ν are compactly supported Borel measures satisfying

 $\mu(B(x,r)) \leq Cr^{s_{\mu}} \text{ and } \nu(B(x,r)) \leq Cr^{s_{\nu}}.$

Krystal Taylor (The Ohio State)

Polynomial growth and examples

• Bounds of this type arise in a variety of contexts.

Polynomial growth and examples

- Bounds of this type arise in a variety of contexts.
- Falconer proved in 1985 that if the Hausdorff dimension of a compact set E ⊂ ℝ^d, d ≥ 2 is greater than ^{d+1}/₂, then the Lebesgue measure of Δ(E) = {|x − y| : x, y ∈ E} is positive.

Polynomial growth and examples

- Bounds of this type arise in a variety of contexts.
- Falconer proved in 1985 that if the Hausdorff dimension of a compact set E ⊂ ℝ^d, d ≥ 2 is greater than ^{d+1}/₂, then the Lebesgue measure of Δ(E) = {|x − y| : x, y ∈ E} is positive.
- The key to Falconer's result can be expressed as an estimate on the $L^1(\mu)$ norm of the operator

$$T_{\sigma}f(x) = \sigma * (f\mu)(x).$$

 The L²(µ) mapping properties of this convolution operator can be used as a *tool* in proving the existence of certain finite point configurations in sets of sufficiently large dimension.

 The L²(µ) mapping properties of this convolution operator can be used as a *tool* in proving the existence of certain finite point configurations in sets of sufficiently large dimension.

 The L²(µ) mapping properties of this convolution operator can be used as a *tool* in proving the existence of certain finite point configurations in sets of sufficiently large dimension.

 The L²(µ) mapping properties of this convolution operator can be used as a *tool* in proving the existence of certain finite point configurations in sets of sufficiently large dimension.

Definition

A k-chain in $E \subset \mathbb{R}^d$ with gaps $\{t_i\}_{i=1}^k$ is a sequence

$$\{x^1, x^2, \dots, x^{k+1} : x^j \in E; |x^{i+1} - x^i| = t_i; 1 \le i \le k\}.$$

We say that the chain is *non-degenerate* if all the x^j s are distinct.

Krystal Taylor (The Ohio State)

Theorem (Bennett, Iosevich, K.T.)

Suppose that the Hausdorff dimension of a compact set $E \subset \mathbb{R}^d$, $d \ge 2$, is greater than $\frac{d+1}{2}$. Then for any $k \ge 1$, there exists an open interval I, such that for any $t \in I$ there exists a non-degenerate k-chain in E with gap lengths equal to t.

Theorem (Bennett, Iosevich, K.T.)

Suppose that the Hausdorff dimension of a compact set $E \subset \mathbb{R}^d$, $d \ge 2$, is greater than $\frac{d+1}{2}$. Then for any $k \ge 1$, there exists an open interval I, such that for any $t \in I$ there exists a non-degenerate k-chain in E with gap lengths equal to t.

• The idea behind the proof is to construct a measure on all k – chains.

Theorem (Bennett, Iosevich, K.T.)

Suppose that the Hausdorff dimension of a compact set $E \subset \mathbb{R}^d$, $d \ge 2$, is greater than $\frac{d+1}{2}$. Then for any $k \ge 1$, there exists an open interval I, such that for any $t \in I$ there exists a non-degenerate k-chain in E with gap lengths equal to t.

- The idea behind the proof is to construct a measure on all k chains.
- We bound

$$C_k^{\epsilon}(\mu) = \int \left(\int \cdots \int \prod_{i=1}^k \sigma_t^{\epsilon}(x^{i+1} - x^i) d\mu(x^i) \right) d\mu(x^{k+1})$$

from above (for all values of t > 0) and below (in the case when t is in a suitable interval).

• The lower bound is accomplished using the continuity of the distance measure. In the case that k = 1, this result was establish in IMT 2011.

- The lower bound is accomplished using the continuity of the distance measure. In the case that *k* = 1, this result was establish in IMT 2011.
- The upper bound is obtained using $L^2(\mu)$ mapping properties:

Theorem (Iosevich, Krause, Sawyer, K.T., Uriarte-Tuero)

Suppose that μ, ν are compactly supported Borel measures on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^{s_{\mu}}, \nu(B(x, r)) \leq Cr^{s_{\nu}}$, respectively, with $s_{\mu} + s_{\nu} > d + 1$. Let

$$T_t f = \sigma_t * (f\mu).$$

Then

 $||T_t f||_{L^2(\nu)} \leq C ||f||_{L^2(\mu)}.$

- The lower bound is accomplished using the continuity of the distance measure. In the case that k = 1, this result was establish in IMT 2011.
- The upper bound is obtained using $L^2(\mu)$ mapping properties:

Theorem (Iosevich, Krause, Sawyer, K.T., Uriarte-Tuero)

Suppose that μ, ν are compactly supported Borel measures on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^{s_{\mu}}, \nu(B(x, r)) \leq Cr^{s_{\nu}}$, respectively, with $s_{\mu} + s_{\nu} > d + 1$. Let

$$T_t f = \sigma_t * (f\mu).$$

Then

$$||T_t f||_{L^2(\nu)} \leq C ||f||_{L^2(\mu)}.$$

 This result is proved using properties of the F.T. and provides a fractal variant of Plancherel.

- The lower bound is accomplished using the continuity of the distance measure. In the case that k = 1, this result was establish in IMT 2011.
- The upper bound is obtained using $L^2(\mu)$ mapping properties:

Theorem (losevich, Krause, Sawyer, K.T., Uriarte-Tuero)

Suppose that μ, ν are compactly supported Borel measures on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^{s_{\mu}}, \nu(B(x, r)) \leq Cr^{s_{\nu}}$, respectively, with $s_{\mu} + s_{\nu} > d + 1$. Let

$$T_t f = \sigma_t * (f\mu).$$

Then

$$||T_t f||_{L^2(\nu)} \leq C ||f||_{L^2(\mu)}.$$

- This result is proved using properties of the F.T. and provides a fractal variant of Plancherel.
- We also prove a maximal version of this theorem. This can be viewed as a fractal variant of Stein's spherical maximal theorem.

Circle Problem

• Let $U \subset \mathbb{R}^d$, $d \ge 2$, and set

$$E=\bigcup_{x\in U}\partial B(x,1).$$

3

$$E=\bigcup_{x\in U}\partial B(x,1).$$

• What are the minimal assumptions on *U* which guarantee that *E* has positive Lebesgue measure?

$$E=\bigcup_{x\in U}\partial B(x,1).$$

- What are the minimal assumptions on *U* which guarantee that *E* has positive Lebesgue measure?
- Theorem: If dim(U) > 1, then E has positive Lebesgue measure.

$$E=\bigcup_{x\in U}\partial B(x,1).$$

- What are the minimal assumptions on *U* which guarantee that *E* has positive Lebesgue measure?
- Theorem: If dim(U) > 1, then E has positive Lebesgue measure.
- This problem can be studied a number of ways.

$$E=\bigcup_{x\in U}\partial B(x,1).$$

- What are the minimal assumptions on *U* which guarantee that *E* has positive Lebesgue measure?
- Theorem: If dim(U) > 1, then E has positive Lebesgue measure.
- This problem can be studied a number of ways.
- In particular, it follows from the inequality: $||\sigma_t * (f\mu)||_{L^2(\nu)} \leq C||f||_{L^2(\mu)}$ where μ and ν are as above.

 The L²(µ) mapping properties of these fractal convolution operators can also be used to recover and extend the pinned distance set result due to Peres and Schlag.

THANK YOU

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト