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Rademacher’s Theorem

Theorem (Rademacher)
Every Lipschitz function f : Rn → Rm is differentiable Lebesgue almost
everywhere.

Equivalently: If a Lipschitz function f : Rn → Rm is differentiable at no
point of N ⊂ Rn, then N is Lebesgue null.

Question: Suppose N ⊂ Rn is Lebesgue null. Does there exist a Lipschitz
function f : Rn → Rm which is differentiable at no point of N?
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Converse to Rademacher’s Theorem?

Theorem (n = 2: Alberti, Csörnyei, Preiss. n > 2: ACP+ C., Jones)
If N ⊂ Rn is Lebesgue null then there is a Lipschitz function f : Rn → Rn

which is differentiable at no point of N.

Theorem (Preiss)
If n > 1, there exists a Lebesgue null set N ⊂ Rn such that every Lipschitz
function f : Rn → R is differentiable at some point of N.

Theorem (Doré-Maleva, Dymond-Maleva)
The universal differentiability set N above can be made compact and of
Hausdorff dimension, or even upper Minkowski dimension, equal to one.
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Maximality of Directional Derivatives

Let E be a Banach space.

Theorem (Fitzpatrick)
Suppose f : E → R is Lipschitz and f ′(x , e) = Lip(f ) for some x ∈ E and
e ∈ E with ‖e‖ = 1. If the norm of E is Fréchet differentiable at e with
derivative e∗, then f is Fréchet differentiable at x and f ′(x) = Lip(f )e∗.

Suppose f is not differentiable at x - find ε > 0 and small h such that:

f (x + h)− f (x) > Lip(f )e∗(h) + ε‖h‖.

x

x + h

x− te e
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Almost Maximality of Directional Derivatives

Let Df := {(x , e) ∈ E × E : ‖e‖ = 1, f ′(x , e) exists}.

Theorem (Preiss)
Suppose f : E → R is Lipschitz and (x0, e0) ∈ Df . Let M denote the set of
all pairs (x , e) ∈ Df such that f ′(x , e) ≥ f ′(x0, e0) and

|(f (x + te0)− f (x))− (f (x0 + te0)− f (x0))|

≤ 6|t|
√

(f ′(x , e)− f ′(x0, e0))Lip(f )

for every t ∈ R. If the norm is Fréchet differentiable at e0 and

lim
δ↓0

sup{f ′(x , e) : (x , e) ∈ M and ‖x − x0‖ ≤ δ} ≤ f ′(x0, e0),

then f is Fréchet differentiable at x0.
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then f is Fréchet differentiable at x0.

Gareth Speight (Cincinnati) UDS in the Heisenberg Group Stony Brook, 2016 4 / 17



Almost Maximality of Directional Derivatives

Let Df := {(x , e) ∈ E × E : ‖e‖ = 1, f ′(x , e) exists}.

Theorem (Preiss)
Suppose f : E → R is Lipschitz and (x0, e0) ∈ Df . Let M denote the set of
all pairs (x , e) ∈ Df such that f ′(x , e) ≥ f ′(x0, e0) and

|(f (x + te0)− f (x))− (f (x0 + te0)− f (x0))|

≤ 6|t|
√

(f ′(x , e)− f ′(x0, e0))Lip(f )

for every t ∈ R. If the norm is Fréchet differentiable at e0 and
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Porous Sets

Definition
Let (X , d) be a metric space. A set P ⊂ X is porous if there is λ > 0
such that for every p ∈ P: there is a sequence xn ∈ X with xn → p and
B(xn, λ‖xn − p‖) ∩ P = ∅.
A set is σ-porous if it is a countable union of porous sets.

p

xn

B(xn, λ‖xn − p‖) ∩ P = ∅
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Applications of Porosity

Lemma (Lindenstrauss, Preiss)
Suppose f : Rn → Rn−1 is Lipschitz. Then the following implication holds
outside a σ-porous set:
If f is differentiable at x in the direction of an (n− 1)-dimensional plane T
then f is regularly differentiable at x in the direction of T .

Theorem (Preiss, S.)
There exists a Lebesgue null set N ⊂ Rn such that every Lipschitz
function f : Rn → Rn−1 is differentiable at a point of N.

Theorem (Preiss, Tiser, Zajicek)
Suppose P ⊂ Rn is σ-porous. Then there is a Lipschitz function
f : Rn → R which is differentiable at no point of P. Hence a universal
differentiability set in Rn cannot be σ-porous.
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Heisenberg Group

Definition
The Heisenberg group Hn is the set R2n+1 equipped with the group law:

(x , y , t)(x ′, y ′, t ′) = (x + x ′, y + y ′, t + t ′ − 2(〈x , y ′〉 − 〈y , x ′〉)).

Left-invariant horizontal vector fields on Hn are defined by:

Xi (x , y , t) = ∂xi + 2yi∂t , Yi (x , y , t) = ∂yi − 2xi∂t , 1 ≤ i ≤ n.

Haar measure on Hn is L2n+1.
Dilations are defined by δr (x , y , t) = (rx , ry , r2t).
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Horizontal Curves and Carnot-Carathéodory Distance

Definition
An absolutely continuous curve γ : [a, b]→ Hn is horizontal if there exists
h : [a, b]→ R2n such that for almost every t:

γ′(t) =
n∑

i=1
hi (t)Xi (γ(t)) + hi+n(t)Yi (γ(t)).

The horizontal length of γ is given by L(γ) =
∫ b

a |h|.
The Carnot-Carathéodory distance dcc on Hn is given by:

dcc(x , y) = inf{L(γ) : γ is horizontal and joins x to y}.

dcc respects group translations and dilations.
dcc is not Lipschitz equivalent to the Euclidean distance.
Horizontal curves in Hn are lifts of curves in R2n.
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Pansu Differentiability

Definition
A function L : Hn → R is called H-linear if L(xy) = L(x) + L(y) and
L(δr (x)) = rL(x) for all x , y ∈ Hn and r > 0.

Definition
A function f : Hn → R is Pansu differentiable at x ∈ Hn if there is a
H-linear map L : Hn → R such that:

lim
y→x
|f (y)− f (x)− L(x−1y)|

dcc(x , y) = 0.

Theorem (Pansu)
Every Lipschitz function f : Hn → R (or even between general Carnot
groups) is Pansu differentiable Lebesgue almost everywhere.
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A Lebesgue Null Universal Differentiability Set in Hn

Theorem (Pinamonti, S.)
There is a Lebesgue null ‘universal differentiability set’ N ⊂ Hn such that
every Lipschitz function f : Hn → R is Pansu differentiable at a point of N.

Idea:
1 Fix a Lebesgue null Gδ set N containing all horizontal lines joining

pairs of points in Q2n+1.
2 Find an ‘almost maximal’ directional derivative Ef (x), where we

consider x ∈ N and horizontal vector fields E of unit length.
3 Show that if x ∈ N and Ef (x) is ‘almost maximal’ then f is Pansu

differentiable at x .
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Directional Derivatives in Hn

Let V = Span{Xi ,Yi : 1 ≤ i ≤ n}.
Let ω be the inner product norm on V for which Xi ,Yi are orthonormal.

Definition
Let f : Hn → R be Lipschitz and E ∈ V . Define Ef (x) := (f ◦ γ)′(t)
whenever it exists, where γ is any Lipschitz horizontal curve with γ(t) = x
and γ′(t) = E (x).

Lemma
Let f : Hn → R be Lipschitz. Then:

LipH(f ) = sup{|Ef (x)| : x ∈ Hn,E ∈ V , ω(E ) = 1,Ef (x) exists }.
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Maximality implies Differentiability

Lemma
Fix u1, u2 ∈ Rn not both zero and let u = (u1, u2, 0) ∈ Hn. Then:

1 dcc(uz , 0) ≥ dcc(u, 0) + 〈z , u/dcc(u, 0)〉 for any z ∈ Hn,

2 dcc(uz , 0) = dcc(u, 0) + 〈z , u/dcc(u, 0)〉+ o(dcc(z , 0)) as z → 0.
That is, the Pansu derivative of dcc(·, 0) at u is x 7→ 〈x , u/dcc(u, 0)〉.

Theorem
Let f : Hn → R be Lipschitz, x ∈ Hn and E ∈ V with ω(E ) = 1. Suppose
Ef (x) exists and Ef (x) = LipH(f ). Then f is Pansu differentiable at x
with derivative x 7→ LipH(f )〈x ,E (0)〉.
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Almost Maximality implies Differentiability

Let Df := {(x ,E ) ∈ N × V : ω(E ) = 1, Ef (x) exists}.

Theorem
Let f : Hn → R be Lipschitz and (x0,E0) ∈ Df . Let M denote the set of
pairs (x ,E ) ∈ Df such that Ef (x) ≥ E0f (x0) and

|(f (x + tE0(x))− f (x))− (f (x0 + tE0(x0))− f (x0))|

≤ 6|t|((Ef (x)− E0f (x0))LipH(f ))
1
4

for every t ∈ (−1, 1). If

lim
δ↓0

sup{Ef (x) : (x ,E ) ∈ M and dcc(x , x0) ≤ δ} ≤ E0f (x0),

then f is Pansu differentiable at x0 with derivative x 7→ E0f (x0)〈x ,E0(0)〉.
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Carnot Groups

Definition
A Carnot group G is a simply connected Lie group whose Lie algebra G
admits a stratification:

G = V1 ⊕ V2 ⊕ · · · ⊕ Vs

with
[V1,Vi ] = Vi+1 if 1 ≤ i ≤ s − 1 and [V1,Vs ] = 0.

Example
Euclidean spaces are Carnot groups of step s = 1.
The Heisenberg group is a Carnot group of step s = 2.

Carnot groups admit structures like those on the Heisenberg group:
translations, dilations, Haar measure, horizontal curves,
Carnot-Carathéodory distance, Pansu’s theorem. . .
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Porosity and Differentiability in Carnot Groups

Theorem (Pinamonti, S.)
Suppose f : G→ R is Lipschitz. Then there is a σ-porous set A ⊂ G such
that for every x /∈ A:

1 if E1f (x) and E2f (x) exist for some E1,E2 ∈ V1 then
(a1E1 + a2E2)f (x) exists and is equal to a1E1f (x) + a2E2f (x),

2 x is a regular point of f .

Theorem (Pinamonti, S.)
Suppose f : G→ R is Lipschitz and x ∈ G. Assume (1) and (2) above
hold and X1f (x), . . . ,Xmf (x) exist for a basis X1, . . . ,Xm of V1. Then f is
Pansu differentiable at x.

Corollary (Pansu’s theorem for Euclidean targets)
Every Lipschitz map f : G→ Rn is Pansu differentiable almost everywhere.
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Porosity and Differentiability in Carnot Groups

Theorem (Pinamonti, S.: work in progress)
Let P ⊂ G be σ-porous. Then there is a Lipschitz function f : G→ R
which is Pansu differentiable at no point of P.

Corollary (work in progress)
Universal differentiability sets in Carnot groups cannot be σ-porous.

Questions:

Do measure zero universal differentiability sets exist in all Carnot
groups?
Can one adapt techniques of Doré, Dymond and Maleva to construct,
in Carnot groups, compact universal differentiability sets of small
dimension?
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Key Points

A converse to Rademacher’s theorem holds for Lipschitz functions
Rn → Rm if and only if n ≤ m.

Maximizing directional derivatives (in small sets) leads to points of
differentiability for Lipschitz functions.
Measure zero ‘universal differentiability sets’ in Hn contain points of
Pansu differentiability for real-valued Lipschitz functions.
Connections between porosity and differentiability in the linear setting
generalise to general Carnot groups.

Thank you for listening!
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