A Measure Zero Universal Differentiability Set in the Heisenberg Group

Gareth Speight

University of Cincinnati

Stony Brook, March 2016

Gareth Speight (Cincinnati)

UDS in the Heisenberg Group

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Equivalently: If a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at no point of $N \subset \mathbb{R}^n$, then N is Lebesgue null.

Theorem (Rademacher)

Every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable Lebesgue almost everywhere.

Equivalently: If a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at no point of $N \subset \mathbb{R}^n$, then N is Lebesgue null.

Question: Suppose $N \subset \mathbb{R}^n$ is Lebesgue null. Does there exist a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^m$ which is differentiable at no point of N?

Theorem (n = 2: Alberti, Csörnyei, Preiss. n > 2: ACP+ C., Jones)

If $N \subset \mathbb{R}^n$ is Lebesgue null then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is differentiable at no point of N.

Theorem (n = 2: Alberti, Csörnyei, Preiss. n > 2: ACP+ C., Jones)

If $N \subset \mathbb{R}^n$ is Lebesgue null then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is differentiable at no point of N.

Theorem (Preiss)

If n > 1, there exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some point of N.

Theorem (n = 2: Alberti, Csörnyei, Preiss. n > 2: ACP+ C., Jones)

If $N \subset \mathbb{R}^n$ is Lebesgue null then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^n$ which is differentiable at no point of N.

Theorem (Preiss)

If n > 1, there exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at some point of N.

Theorem (Doré-Maleva, Dymond-Maleva)

The **universal differentiability set** N above can be made compact and of Hausdorff dimension, or even upper Minkowski dimension, equal to one.

Let E be a Banach space.

Theorem (Fitzpatrick)

Suppose $f : E \to \mathbb{R}$ is Lipschitz and $f'(x, e) = \operatorname{Lip}(f)$ for some $x \in E$ and $e \in E$ with ||e|| = 1. If the norm of E is Fréchet differentiable at e with derivative e^* , then f is Fréchet differentiable at x and $f'(x) = \operatorname{Lip}(f)e^*$.

Let E be a Banach space.

Theorem (Fitzpatrick)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $f'(x, e) = \operatorname{Lip}(f)$ for some $x \in E$ and $e \in E$ with ||e|| = 1. If the norm of E is Fréchet differentiable at e with derivative e^* , then f is Fréchet differentiable at x and $f'(x) = \operatorname{Lip}(f)e^*$.

Suppose f is not differentiable at x - find $\varepsilon > 0$ and small h such that:

$$f(x+h) - f(x) > \operatorname{Lip}(f)e^*(h) + \varepsilon \|h\|.$$

Let $D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$

Let
$$D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$.

Let
$$D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$. Let M denote the set of all pairs $(x, e) \in D^f$ such that $f'(x, e) \ge f'(x_0, e_0)$ and

$$egin{aligned} &|(f(x+te_0)-f(x))-(f(x_0+te_0)-f(x_0))|\ &\leq 6|t|\sqrt{(f'(x,e)-f'(x_0,e_0)) ext{Lip}(f)} \end{aligned}$$

for every $t \in \mathbb{R}$.

Let
$$D^f := \{(x, e) \in E \times E : ||e|| = 1, f'(x, e) \text{ exists} \}.$$

Theorem (Preiss)

Suppose $f: E \to \mathbb{R}$ is Lipschitz and $(x_0, e_0) \in D^f$. Let M denote the set of all pairs $(x, e) \in D^f$ such that $f'(x, e) \ge f'(x_0, e_0)$ and

$$egin{aligned} |(f(x+te_0)-f(x))-(f(x_0+te_0)-f(x_0))|\ &\leq 6|t|\sqrt{(f'(x,e)-f'(x_0,e_0)) ext{Lip}(f)} \end{aligned}$$

for every $t \in \mathbb{R}$. If the norm is Fréchet differentiable at e_0 and

$$\lim_{\delta \downarrow 0} \sup\{f'(x, e) \colon (x, e) \in M \text{ and } \|x - x_0\| \le \delta\} \le f'(x_0, e_0),$$

then f is Fréchet differentiable at x_0 .

Let (X, d) be a metric space. A set $P \subset X$ is **porous** if there is $\lambda > 0$ such that for every $p \in P$: there is a sequence $x_n \in X$ with $x_n \to p$ and $B(x_n, \lambda || x_n - p ||) \cap P = \emptyset$.

A set is σ -**porous** if it is a countable union of porous sets.

Lemma (Lindenstrauss, Preiss)

Suppose $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is Lipschitz. Then the following implication holds outside a σ -porous set:

If f is differentiable at x in the direction of an (n-1)-dimensional plane T then f is **regularly differentiable** at x in the direction of T.

Lemma (Lindenstrauss, Preiss)

Suppose $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is Lipschitz. Then the following implication holds outside a σ -porous set:

If f is differentiable at x in the direction of an (n-1)-dimensional plane T then f is **regularly differentiable** at x in the direction of T.

Theorem (Preiss, S.)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is differentiable at a point of N.

Lemma (Lindenstrauss, Preiss)

Suppose $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is Lipschitz. Then the following implication holds outside a σ -porous set:

If f is differentiable at x in the direction of an (n-1)-dimensional plane T then f is **regularly differentiable** at x in the direction of T.

Theorem (Preiss, S.)

There exists a Lebesgue null set $N \subset \mathbb{R}^n$ such that every Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is differentiable at a point of N.

Theorem (Preiss, Tiser, Zajicek)

Suppose $P \subset \mathbb{R}^n$ is σ -porous. Then there is a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ which is differentiable at no point of P. Hence a universal differentiability set in \mathbb{R}^n cannot be σ -porous.

The Heisenberg group \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t')=(x+x',y+y',t+t'-2(\langle x,y'
angle-\langle y,x'
angle)).$$

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t') = (x+x',y+y',t+t'-2(\langle x,y'\rangle - \langle y,x'\rangle)).$$

Left-invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \le i \le n.$$

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t') = (x+x',y+y',t+t'-2(\langle x,y'\rangle - \langle y,x'\rangle)).$$

Left-invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \le i \le n.$$

• Haar measure on \mathbb{H}^n is \mathcal{L}^{2n+1} .

The **Heisenberg group** \mathbb{H}^n is the set \mathbb{R}^{2n+1} equipped with the group law:

$$(x,y,t)(x',y',t') = (x+x',y+y',t+t'-2(\langle x,y'\rangle - \langle y,x'\rangle)).$$

Left-invariant **horizontal vector fields** on \mathbb{H}^n are defined by:

$$X_i(x, y, t) = \partial_{x_i} + 2y_i \partial_t, \quad Y_i(x, y, t) = \partial_{y_i} - 2x_i \partial_t, \quad 1 \leq i \leq n.$$

- Haar measure on \mathbb{H}^n is \mathcal{L}^{2n+1} .
- **Dilations** are defined by $\delta_r(x, y, t) = (rx, ry, r^2t)$.

Horizontal Curves and Carnot-Carathéodory Distance

Definition

An absolutely continuous curve $\gamma \colon [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h \colon [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

Horizontal Curves and Carnot-Carathéodory Distance

Definition

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h : [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

The **horizontal length** of γ is given by $L(\gamma) = \int_a^b |h|$.

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h : [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

The horizontal length of γ is given by $L(\gamma) = \int_a^b |h|$. The Carnot-Carathéodory distance d_{cc} on \mathbb{H}^n is given by:

 $d_{cc}(x, y) = \inf\{L(\gamma) : \gamma \text{ is horizontal and joins } x \text{ to } y\}.$

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h : [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

The horizontal length of γ is given by $L(\gamma) = \int_a^b |h|$. The Carnot-Carathéodory distance d_{cc} on \mathbb{H}^n is given by:

 $d_{cc}(x, y) = \inf\{L(\gamma) : \gamma \text{ is horizontal and joins } x \text{ to } y\}.$

• *d_{cc}* respects group translations and dilations.

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h : [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

The horizontal length of γ is given by $L(\gamma) = \int_a^b |h|$. The Carnot-Carathéodory distance d_{cc} on \mathbb{H}^n is given by:

 $d_{cc}(x, y) = \inf\{L(\gamma): \gamma \text{ is horizontal and joins } x \text{ to } y\}.$

- *d_{cc}* respects group translations and dilations.
- d_{cc} is not Lipschitz equivalent to the Euclidean distance.

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{H}^n$ is **horizontal** if there exists $h : [a, b] \to \mathbb{R}^{2n}$ such that for almost every t:

$$\gamma'(t) = \sum_{i=1}^n h_i(t) X_i(\gamma(t)) + h_{i+n}(t) Y_i(\gamma(t)).$$

The horizontal length of γ is given by $L(\gamma) = \int_a^b |h|$. The Carnot-Carathéodory distance d_{cc} on \mathbb{H}^n is given by:

 $d_{cc}(x, y) = \inf\{L(\gamma): \gamma \text{ is horizontal and joins } x \text{ to } y\}.$

- *d_{cc}* respects group translations and dilations.
- *d_{cc}* is not Lipschitz equivalent to the Euclidean distance.
- Horizontal curves in \mathbb{H}^n are lifts of curves in \mathbb{R}^{2n} .

Gareth Speight (Cincinnati)

UDS in the Heisenberg Group

Pansu Differentiability

Definition

A function $L: \mathbb{H}^n \to \mathbb{R}$ is called \mathbb{H} -linear if L(xy) = L(x) + L(y) and $L(\delta_r(x)) = rL(x)$ for all $x, y \in \mathbb{H}^n$ and r > 0.

Pansu Differentiability

Definition

A function $L: \mathbb{H}^n \to \mathbb{R}$ is called \mathbb{H} -linear if L(xy) = L(x) + L(y) and $L(\delta_r(x)) = rL(x)$ for all $x, y \in \mathbb{H}^n$ and r > 0.

Definition

A function $f : \mathbb{H}^n \to \mathbb{R}$ is **Pansu differentiable** at $x \in \mathbb{H}^n$ if there is a \mathbb{H} -linear map $L : \mathbb{H}^n \to \mathbb{R}$ such that:

$$\lim_{y \to x} \frac{|f(y) - f(x) - L(x^{-1}y)|}{d_{cc}(x, y)} = 0.$$

Pansu Differentiability

Definition

A function $L: \mathbb{H}^n \to \mathbb{R}$ is called \mathbb{H} -linear if L(xy) = L(x) + L(y) and $L(\delta_r(x)) = rL(x)$ for all $x, y \in \mathbb{H}^n$ and r > 0.

Definition

A function $f : \mathbb{H}^n \to \mathbb{R}$ is **Pansu differentiable** at $x \in \mathbb{H}^n$ if there is a \mathbb{H} -linear map $L : \mathbb{H}^n \to \mathbb{R}$ such that:

$$\lim_{y \to x} \frac{|f(y) - f(x) - L(x^{-1}y)|}{d_{cc}(x, y)} = 0.$$

Theorem (Pansu)

Every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ (or even between general Carnot groups) is Pansu differentiable Lebesgue almost everywhere.

Gareth Speight (Cincinnati)

UDS in the Heisenberg Group

There is a Lebesgue null 'universal differentiability set' $N \subset \mathbb{H}^n$ such that every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of N.

There is a Lebesgue null 'universal differentiability set' $N \subset \mathbb{H}^n$ such that every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of N.

Idea:

• Fix a Lebesgue null G_{δ} set N containing all horizontal lines joining pairs of points in \mathbb{Q}^{2n+1} .

There is a Lebesgue null 'universal differentiability set' $N \subset \mathbb{H}^n$ such that every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of N.

Idea:

- Fix a Lebesgue null G_{δ} set N containing all horizontal lines joining pairs of points in \mathbb{Q}^{2n+1} .
- Sind an 'almost maximal' directional derivative Ef(x), where we consider x ∈ N and horizontal vector fields E of unit length.

There is a Lebesgue null 'universal differentiability set' $N \subset \mathbb{H}^n$ such that every Lipschitz function $f : \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of N.

Idea:

- Fix a Lebesgue null G_δ set N containing all horizontal lines joining pairs of points in Q²ⁿ⁺¹.
- Solution is a set of the set
- Show that if $x \in N$ and Ef(x) is 'almost maximal' then f is Pansu differentiable at x.

Let $V = \text{Span}\{X_i, Y_i \colon 1 \leq i \leq n\}.$

Let ω be the inner product norm on V for which X_i, Y_i are orthonormal.

Let $V = \text{Span}\{X_i, Y_i : 1 \le i \le n\}.$

Let ω be the inner product norm on V for which X_i, Y_i are orthonormal.

Definition

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $E \in V$. Define $Ef(x) := (f \circ \gamma)'(t)$ whenever it exists, where γ is any Lipschitz horizontal curve with $\gamma(t) = x$ and $\gamma'(t) = E(x)$. Let $V = \text{Span}\{X_i, Y_i : 1 \le i \le n\}.$

Let ω be the inner product norm on V for which X_i, Y_i are orthonormal.

Definition

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $E \in V$. Define $Ef(x) := (f \circ \gamma)'(t)$ whenever it exists, where γ is any Lipschitz horizontal curve with $\gamma(t) = x$ and $\gamma'(t) = E(x)$.

Lemma

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz. Then:

 $\operatorname{Lip}_{\mathbb{H}}(f) = \sup\{|Ef(x)| \colon x \in \mathbb{H}^n, E \in V, \omega(E) = 1, Ef(x) \text{ exists } \}.$

Lemma

Fix $u_1, u_2 \in \mathbb{R}^n$ not both zero and let $u = (u_1, u_2, 0) \in \mathbb{H}^n$. Then: $d_{cc}(uz, 0) \ge d_{cc}(u, 0) + \langle z, u/d_{cc}(u, 0) \rangle$ for any $z \in \mathbb{H}^n$,

Lemma

Fix $u_1, u_2 \in \mathbb{R}^n$ not both zero and let $u = (u_1, u_2, 0) \in \mathbb{H}^n$. Then:

- $d_{cc}(uz,0) \ge d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle$ for any $z \in \mathbb{H}^n$,
- $d_{cc}(uz,0) = d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle + o(d_{cc}(z,0)) \text{ as } z \to 0.$ That is, the Pansu derivative of $d_{cc}(\cdot,0)$ at u is $x \mapsto \langle x, u/d_{cc}(u,0) \rangle$.

Lemma

Fix $u_1, u_2 \in \mathbb{R}^n$ not both zero and let $u = (u_1, u_2, 0) \in \mathbb{H}^n$. Then:

- $\ \, {\sf O} \ \, d_{cc}(uz,0)\geq d_{cc}(u,0)+\langle z,u/d_{cc}(u,0)\rangle \ \, {\sf for \ any \ } z\in \mathbb{H}^n,$
- $d_{cc}(uz,0) = d_{cc}(u,0) + \langle z, u/d_{cc}(u,0) \rangle + o(d_{cc}(z,0)) \text{ as } z \to 0.$ That is, the Pansu derivative of $d_{cc}(\cdot,0)$ at u is $x \mapsto \langle x, u/d_{cc}(u,0) \rangle$.

Theorem

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz, $x \in \mathbb{H}^n$ and $E \in V$ with $\omega(E) = 1$. Suppose Ef(x) exists and $Ef(x) = \operatorname{Lip}_{\mathbb{H}}(f)$. Then f is Pansu differentiable at x with derivative $x \mapsto \operatorname{Lip}_{\mathbb{H}}(f)\langle x, E(0) \rangle$.

Let $D^f := \{(x, E) \in N \times V : \omega(E) = 1, Ef(x) \text{ exists}\}.$

Let
$$D^f := \{(x, E) \in N \times V : \omega(E) = 1, Ef(x) \text{ exists}\}.$$

Theorem

Let $f : \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$.

Let
$$D^f := \{(x, E) \in N \times V : \omega(E) = 1, Ef(x) \text{ exists}\}.$$

Theorem

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$. Let M denote the set of pairs $(x, E) \in D^f$ such that $Ef(x) \ge E_0f(x_0)$ and

$$\begin{aligned} |(f(x+tE_0(x))-f(x))-(f(x_0+tE_0(x_0))-f(x_0))| \\ &\leq 6|t|((Ef(x)-E_0f(x_0))\mathrm{Lip}_{\mathbb{H}}(f))^{\frac{1}{4}} \end{aligned}$$

for every $t \in (-1, 1)$.

Let
$$D^f := \{(x, E) \in N \times V : \omega(E) = 1, Ef(x) \text{ exists}\}.$$

Theorem

Let $f: \mathbb{H}^n \to \mathbb{R}$ be Lipschitz and $(x_0, E_0) \in D^f$. Let M denote the set of pairs $(x, E) \in D^f$ such that $Ef(x) \ge E_0f(x_0)$ and

$$\begin{aligned} |(f(x + tE_0(x)) - f(x)) - (f(x_0 + tE_0(x_0)) - f(x_0))| \\ &\leq 6|t|((Ef(x) - E_0f(x_0))\mathrm{Lip}_{\mathbb{H}}(f))^{\frac{1}{4}} \end{aligned}$$

for every $t \in (-1, 1)$. If

 $\limsup_{\delta \downarrow 0} \sup \{ Ef(x) \colon (x, E) \in M \text{ and } d_{cc}(x, x_0) \leq \delta \} \leq E_0 f(x_0),$

then f is Pansu differentiable at x_0 with derivative $x \mapsto E_0 f(x_0) \langle x, E_0(0) \rangle$.

A Carnot group $\mathbb G$ is a simply connected Lie group whose Lie algebra $\mathcal G$ admits a stratification:

$$\mathcal{G} = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

with

$$[V_1, V_i] = V_{i+1}$$
 if $1 \le i \le s - 1$ and $[V_1, V_s] = 0$.

Example

Euclidean spaces are Carnot groups of step s = 1. The Heisenberg group is a Carnot group of step s = 2.

Carnot groups admit structures like those on the Heisenberg group: translations, dilations, Haar measure, horizontal curves, Carnot-Carathéodory distance, Pansu's theorem...

Gareth Speight (Cincinnati)

UDS in the Heisenberg Group

Theorem (Pinamonti, S.)

Suppose $f : \mathbb{G} \to \mathbb{R}$ is Lipschitz. Then there is a σ -porous set $A \subset \mathbb{G}$ such that for every $x \notin A$:

- if $E_1f(x)$ and $E_2f(x)$ exist for some $E_1, E_2 \in V_1$ then $(a_1E_1 + a_2E_2)f(x)$ exists and is equal to $a_1E_1f(x) + a_2E_2f(x)$,
- 2 x is a regular point of f.

Theorem (Pinamonti, S.)

Suppose $f : \mathbb{G} \to \mathbb{R}$ is Lipschitz. Then there is a σ -porous set $A \subset \mathbb{G}$ such that for every $x \notin A$:

- if $E_1f(x)$ and $E_2f(x)$ exist for some $E_1, E_2 \in V_1$ then $(a_1E_1 + a_2E_2)f(x)$ exists and is equal to $a_1E_1f(x) + a_2E_2f(x)$,
- 2 x is a regular point of f.

Theorem (Pinamonti, S.)

Suppose $f : \mathbb{G} \to \mathbb{R}$ is Lipschitz and $x \in \mathbb{G}$. Assume (1) and (2) above hold and $X_1f(x), \ldots, X_mf(x)$ exist for a basis X_1, \ldots, X_m of V_1 . Then f is Pansu differentiable at x.

Theorem (Pinamonti, S.)

Suppose $f : \mathbb{G} \to \mathbb{R}$ is Lipschitz. Then there is a σ -porous set $A \subset \mathbb{G}$ such that for every $x \notin A$:

- if $E_1f(x)$ and $E_2f(x)$ exist for some $E_1, E_2 \in V_1$ then $(a_1E_1 + a_2E_2)f(x)$ exists and is equal to $a_1E_1f(x) + a_2E_2f(x)$,
- 2 x is a regular point of f.

Theorem (Pinamonti, S.)

Suppose $f : \mathbb{G} \to \mathbb{R}$ is Lipschitz and $x \in \mathbb{G}$. Assume (1) and (2) above hold and $X_1f(x), \ldots, X_mf(x)$ exist for a basis X_1, \ldots, X_m of V_1 . Then f is Pansu differentiable at x.

Corollary (Pansu's theorem for Euclidean targets)

Every Lipschitz map $f : \mathbb{G} \to \mathbb{R}^n$ is Pansu differentiable almost everywhere.

Gareth Speight (Cincinnati)

Theorem (Pinamonti, S.: work in progress)

Let $P \subset \mathbb{G}$ be σ -porous. Then there is a Lipschitz function $f : \mathbb{G} \to \mathbb{R}$ which is Pansu differentiable at no point of P.

Theorem (Pinamonti, S.: work in progress)

Let $P \subset \mathbb{G}$ be σ -porous. Then there is a Lipschitz function $f : \mathbb{G} \to \mathbb{R}$ which is Pansu differentiable at no point of P.

Corollary (work in progress)

Universal differentiability sets in Carnot groups cannot be σ -porous.

Theorem (Pinamonti, S.: work in progress)

Let $P \subset \mathbb{G}$ be σ -porous. Then there is a Lipschitz function $f : \mathbb{G} \to \mathbb{R}$ which is Pansu differentiable at no point of P.

Corollary (work in progress)

Universal differentiability sets in Carnot groups cannot be σ -porous.

Questions:

- Do measure zero universal differentiability sets exist in all Carnot groups?
- Can one adapt techniques of Doré, Dymond and Maleva to construct, in Carnot groups, compact universal differentiability sets of small dimension?

• A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- Maximizing directional derivatives (in small sets) leads to points of differentiability for Lipschitz functions.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- Maximizing directional derivatives (in small sets) leads to points of differentiability for Lipschitz functions.
- Measure zero 'universal differentiability sets' in 𝔅ⁿ contain points of Pansu differentiability for real-valued Lipschitz functions.

- A converse to Rademacher's theorem holds for Lipschitz functions $\mathbb{R}^n \to \mathbb{R}^m$ if and only if $n \leq m$.
- Maximizing directional derivatives (in small sets) leads to points of differentiability for Lipschitz functions.
- Measure zero 'universal differentiability sets' in *ℍ*ⁿ contain points of Pansu differentiability for real-valued Lipschitz functions.
- Connections between porosity and differentiability in the linear setting generalise to general Carnot groups.

Thank you for listening!