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Lipschitz differentiability spaces

We will consider generalisations of Rademacher’s theorem to
metric measure spaces (X , d , µ). Fix a Lipschitz ϕ : X → Rn.

Definition
A function f : X → R is differentiable at x0 if there exists a
unique, linear Df (x0) : Rn → R such that

f (x)− f (x0) = Df (x0)(ϕ(x)− ϕ(x0)) + o(d(x , x0)).

Definition
A metric measure space is an n-dimensional Lipschitz
differentiability space if there exists a ϕ such that every Lipschitz
f : X → R is differentiable µ a.e.
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Definition
A metric measure space is an n-dimensional RNP Lipschitz
differentiability space if every Lipschitz f : X → V is differentiable
µ a.e. for every V with the Radon Nikodym property.

V has the RNP if every Lipschitz γ : [0, 1] → V is differentiable
(Lebesgue) a.e.



Theorems of Cheeger and Cheeger-Kleiner

Theorem (Cheeger ’99)

Any doubling metric measure space that satisfies the Poincaré
inequality is a Lipschitz differentiability space.

Theorem (Cheeger-Kleiner ’09)

It is a RNP Lipschitz differentiability space.

Examples: Heisenberg group, Laakso space.
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Alberti representations

Another generalisation of Rademacher’s theorem to metric spaces:
form partial derivatives of a Lipschitz function along curves.

Let Γ denote the set of bi-Lipschitz γ : dom γ ⊂ R→ X . We call
the elements of Γ curve fragments.

Definition
A probability measure P on Γ and measures µγ � H1xγ form an
Alberti representation of µ if

µ(B) =

∫
µγ(B)dP(γ)

for each Borel B ⊂ X .

Gives a partial derivative (f ◦ γ)′(t) of any Lipschitz function f at
µ-a.e. x .
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Multiple Alberti representations

For simplicity, suppose that the partial derivative of every Lipschitz
function is well defined almost everywhere.

Then, given n Alberti representations of µ, we can form the
gradient of partial derivatives ∇f (x) ∈ Rn for µ-a.e. x .

I n Alberti representations are independent if there exists a
Lipschitz ϕ : X → Rn such that ∇ϕ(x) is invertible for µ-a.e
x .

I Independent Alberti representations are universal if there
exists a δ > 0 such that maxi ∇i f (x) ≥ δ Lip f (x) for µ-a.e. x .

Theorem (B ’12)

(X , d , µ) is an n-dimensional Lipschitz differentiability space if and
only if µ has a universal collection of n Alberti representatations.
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A purely geometric approach

Can we describe universal Alberti representations purely in terms of
the geometry of the metric space?

I Suppose µ has 2 Alberti representations supported on Γ1, Γ2

and there exists a C ≥ 1 such that

I for any ε > 0 and S ⊂ X , for µ-a.e. x0 ∈ S and every
sufficiently close x there exists a 1-Lipschitz

γ : dom γ ⊂ [a, b]→ X

formed by concatenating curves in Γi that joins x0 to x with

I b − a ≤ Cd(x , x0) and |[a, b] \ γ−1(S)| ≤ εd(x , x0).

We say that such Alberti representations connect points in X .
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A purely geometric approach

Now let f : X → R be Lipschitz and for D ∈ Rn and ε > 0 set

S = SD,ε = {y ∈ X : ‖∇f (y)− D · ∇ϕ(y)‖ < ε}.

(For any ε > 0, we can cover almost all of X by sets of this form.)

Then by using the Fundamental theorem of calculus along the
curve γ,

f (x)− f (x0) =

∫
γ−1(S)

(f ◦ γ)′ + εd(x , x0) Lip fO(1)

=

∫
γ−1(S)

D · (ϕ ◦ γ)′ + εd(x , x0)(C + Lip)O(1)

= D · (ϕ(x)− ϕ(x0)) + εd(x , x0)(Lipϕ+ C + Lip f )O(1)

Let ε→ 0, D → Df (x0) for µ-a.e x0. Also works for RNP valued f .
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A characterisation of RNP-LDS

Theorem (B, Li ’15)

(X , d , µ) is a RNP-LDS if and only if µ has Alberti representations
that connect points.

I We need RNP targets, specifically an `1 sum of `p spaces
(p →∞).

I It is an open question whether LDS ⇔ RNP-LDS.
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Idea of the proof

I Negating “Alberti representations connect points” (and some
measure theory) gives a β > 0 such that, for every ε > 0,

ρε(x , x0) := inf
γ
ε| dom γ|+ |[a, b] \ dom γ|

(γ a concatenation of curves in Γi joining x to x0) satisfies

lim sup
x→x0

ρε(x , x0)

d(x , x0)
≥ β.

I Also, if γ̃ is a curve in Γi then |(ρε ◦ γ̃)′(t)| ≤ ε for a.e. t.

I Universal Alberti representations ⇒ | Lip ρε(x)| ≤ ε/δ µ-a.e. x

I They cannot be glued together to form a single function that
is bad on a set of large measure.

I Instead, each function goes into a component of an `p valued
function. Combining over ε→ 0 requires a further `1 sum.



Idea of the proof

I Negating “Alberti representations connect points” (and some
measure theory) gives a β > 0 such that, for every ε > 0,

ρε(x , x0) := inf
γ
ε| dom γ|+ |[a, b] \ dom γ|

(γ a concatenation of curves in Γi joining x to x0) satisfies

lim sup
x→x0

ρε(x , x0)

d(x , x0)
≥ β.

I Also, if γ̃ is a curve in Γi then |(ρε ◦ γ̃)′(t)| ≤ ε for a.e. t.

I Universal Alberti representations ⇒ | Lip ρε(x)| ≤ ε/δ µ-a.e. x

I They cannot be glued together to form a single function that
is bad on a set of large measure.

I Instead, each function goes into a component of an `p valued
function. Combining over ε→ 0 requires a further `1 sum.



Idea of the proof

I Negating “Alberti representations connect points” (and some
measure theory) gives a β > 0 such that, for every ε > 0,

ρε(x , x0) := inf
γ
ε| dom γ|+ |[a, b] \ dom γ|

(γ a concatenation of curves in Γi joining x to x0) satisfies

lim sup
x→x0

ρε(x , x0)

d(x , x0)
≥ β.

I Also, if γ̃ is a curve in Γi then |(ρε ◦ γ̃)′(t)| ≤ ε for a.e. t.

I Universal Alberti representations ⇒ | Lip ρε(x)| ≤ ε/δ µ-a.e. x

I They cannot be glued together to form a single function that
is bad on a set of large measure.

I Instead, each function goes into a component of an `p valued
function. Combining over ε→ 0 requires a further `1 sum.



Idea of the proof

I Negating “Alberti representations connect points” (and some
measure theory) gives a β > 0 such that, for every ε > 0,

ρε(x , x0) := inf
γ
ε| dom γ|+ |[a, b] \ dom γ|

(γ a concatenation of curves in Γi joining x to x0) satisfies

lim sup
x→x0

ρε(x , x0)

d(x , x0)
≥ β.

I Also, if γ̃ is a curve in Γi then |(ρε ◦ γ̃)′(t)| ≤ ε for a.e. t.

I Universal Alberti representations ⇒ | Lip ρε(x)| ≤ ε/δ µ-a.e. x

I They cannot be glued together to form a single function that
is bad on a set of large measure.

I Instead, each function goes into a component of an `p valued
function. Combining over ε→ 0 requires a further `1 sum.



Idea of the proof

I Negating “Alberti representations connect points” (and some
measure theory) gives a β > 0 such that, for every ε > 0,

ρε(x , x0) := inf
γ
ε| dom γ|+ |[a, b] \ dom γ|

(γ a concatenation of curves in Γi joining x to x0) satisfies

lim sup
x→x0

ρε(x , x0)

d(x , x0)
≥ β.

I Also, if γ̃ is a curve in Γi then |(ρε ◦ γ̃)′(t)| ≤ ε for a.e. t.

I Universal Alberti representations ⇒ | Lip ρε(x)| ≤ ε/δ µ-a.e. x

I They cannot be glued together to form a single function that
is bad on a set of large measure.

I Instead, each function goes into a component of an `p valued
function. Combining over ε→ 0 requires a further `1 sum.


