Singular sets of n-uniform measures

A. Dali Nimer (University of Washington)

AMS Spring Eastern Sectional Meeting, State University of New York at Stony Brook, NY

March 19th, 2016
Besicovitch (1938) Let $E \subset \mathbb{R}^2$, $0 < \mathcal{H}^1(E) < \infty$ and for \mathcal{H}^1 almost every $x \in E$,

$$\lim_{r \to 0} \frac{\mathcal{H}^1(E \cap B(x, r))}{2r} = 1.$$

Then

E is $1 -$ rectifiable.
Theorem (Preiss)

Let Φ be a Radon measure on \mathbb{R}^d. Then Φ is n-rectifiable (i.e. $\Phi \ll \mathcal{H}^n$ and that $\Phi(\mathbb{R}^d \setminus E) = 0$ for some n-rectifiable set E) if and only if for Φ almost every x, $\Theta^n(\Phi, x) = \lim_{r \to 0} \frac{\Phi(B(x,r))}{\omega_n r^n}$ exists and

$$0 < \Theta^n(\Phi, x) < \infty.$$
Definition

Let Φ be a Radon measure on \mathbb{R}^d, x a point in its support such that $\Theta^n(\Phi, x)$ is positive and finite. We say that λ is a tangent measure of Φ at x and denote $\lambda \in Tan(\Phi, x)$ if $\lambda \neq 0$ and there exists a sequence of positive radii (r_i), with $r_i \downarrow 0$ such that:

$$
\Phi_{x, r_i} \rightharpoonup \lambda \text{ as } i \to \infty,
$$

where the convergence is the weak convergence of measures and

$$
\Phi_{x, r} = r^{-n} T_{x, r} \Phi
$$

is the push-forward of Φ by the homothecy $T_{x, r}(y) = \frac{y-x}{r}$.
Definition

Let μ be a Radon measure in \mathbb{R}^d. We say μ is n-uniform if there exists $c > 0$ such that for all $x \in spt(\mu)$, $r > 0$:

$$\mu(B(x, r)) = cr^n.$$
(**Kirchheim-Preiss**) The support of an \(n \)-uniform measure is an analytic variety. Remark: By Lojasiewicz’ structure theorem, its singular set has Hausdorff dimension at most \((n - 1)\).

- (Preiss) \(n = 1, \, d \geq 1: \mathcal{H}^1_\mathbb{R} \).
- (Preiss) \(n = 2, \, d \geq 2: \mathcal{H}^2_\mathbb{R}^2 \).
(Kirchheim-Preiss) The support of an n-uniform measure is an analytic variety. Remark: By Lojasiewicz’ structure theorem, its singular set has Hausdorff dimension at most $(n - 1)$.

(Preiss) $n = 1, d \geq 1$: $\mathcal{H}^1 \cap \mathbb{R}$.

(Preiss) $n = 2, d \geq 2$: $\mathcal{H}^2 \cap \mathbb{R}^2$.
(Kirchheim-Preiss) The support of an n-uniform measure is an analytic variety. Remark: By Lojasiewicz’ structure theorem, its singular set has Hausdorff dimension at most $(n - 1)$.

(Preiss) $n = 1, d \geq 1$: $\mathcal{H}^1 \subseteq \mathbb{R}$.

(Preiss) $n = 2, d \geq 2$: $\mathcal{H}^2 \subseteq \mathbb{R}^2$.
(Kowalski-Preiss) In \mathbb{R}^4, consider the cone

$$ C = \left\{ (x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2 \right\}. $$

Then the measure $\mathcal{H}^3 \llcorner C$ is 3-uniform.

(Kowalski-Preiss) $d = n + 1$ the support of an n-uniform measure in \mathbb{R}^{n+1} can only be an n-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$
(Kowalski-Preiss) In \mathbb{R}^4, consider the cone

$$C = \left\{ (x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2 \right\}.$$

Then the measure $\mathcal{H}^3 \ll C$ is 3-uniform.

(Kowalski-Preiss) $d = n + 1$ the support of an n-uniform measure in \mathbb{R}^{n+1} can only be an n-plane or (up to rotation) $\mathbb{R}^{n-3} \times C$.

A. Dali Nimer (University of Washington)

Singular sets of n-uniform measures
Questions:

- How large is the singular set of \(n \)-uniform measures?
- Are there other \(n \)-uniform measures?
- Can we classify them?
Questions:

- How large is the singular set of \(n\)-uniform measures?
- Are there other \(n\)-uniform measures?
- Can we classify them?
Questions:

- How large is the singular set of n-uniform measures?
- Are there other n-uniform measures?
- Can we classify them?
Questions:

- How large is the singular set of n-uniform measures?
- Are there other n-uniform measures?
- Can we classify them?
Definition

Let μ be an n-uniform measure in \mathbb{R}^d.

- We call x_0 a flat point of μ if there exists a unique n-plane V_{x_0} such that $\text{Tan}(\mu, x_0) = \{c\mathcal{H}^n \cap V_{x_0} ; c > 0\}$.
- We denote by S_μ the singular set of μ defined as:

$$S_\mu = \{x \in spt(\mu) ; x \text{ is not a flat point} \} .$$

- We say μ is a conical n-uniform measure if for $A \subset \mathbb{R}^d$, $r > 0$,

$$\mu(rA) = r^n \mu(A) .$$
Theorem (N. 2015)

Let μ be an n-uniform measure in \mathbb{R}^d, $n \geq 3$ and S_μ be its set of singularities. Then:

$$\dim_H(S_\mu) \leq n - 3.$$
This bound is sharp. Indeed, taking $\mu = \mathcal{H}^n_L(\mathbb{R}^{n-3} \times C)$ we have

$$\dim_{\mathcal{H}}(S_\mu) = n - 3.$$
Theorem (N. 2015)

Let ν be a conical 3-uniform measure, $\Omega = \text{spt}(\nu) \cap \mathbb{S}^{d-1}$, and $\sigma = \mathcal{H}^2 \lfloor \Omega$. Then for all $x \in \Omega$, for $0 \leq r \leq 2$:

$$\sigma(B(x, r)) = \pi r^2.$$
Theorem (N. 2015)

Let μ be an n-uniform measure in \mathbb{R}^d, $x_0 \in \text{spt}(\mu)$. Let ν be a tangent to μ at x_0 and let r_j be a sequence of positive radii so that

$$\mu_{x_0, r_j} \rightharpoonup \nu.$$

Then if $\{x_j\} \subset S_\mu$, there exists $y \in S_\nu$ so that:

$$\frac{x_j - x_0}{r_j} \rightarrow y.$$
Questions:

- How large is the singular set of n-uniform measures?
- Are there other n-uniform measures?
Questions:

- How large is the singular set of n-uniform measures?
- Are there other n-uniform measures?
Questions:
- How large is the singular set of n-uniform measures?
- Are there other n-uniform measures?
Projects

- Obtain full description of 3-uniform conical measures.
- Are there other examples of 3-uniform measures?
Projects

- Obtain full description of 3-uniform conical measures.
- Are there other examples of 3-uniform measures?
Thank you!