Introduction Results Current projects

Singular sets of n-uniform measures

A. Dali Nimer (University of Washington)

AMS Spring Eastern Sectional Meeting, State University of New York at Stony Brook, NY

March 19th, 2016

Besicovitch(1938) Let $E \subset \mathbb{R}^2, 0 < \mathcal{H}^1(E) < \infty$ and for \mathcal{H}^1 almost every $x \in E$,

$$\lim_{r\to 0}\frac{\mathcal{H}^1(E\cap B(x,r))}{2r}=1.$$

Then

E is 1 - rectifiable.

Theorem (Preiss)

Let Φ be a Radon measure on \mathbb{R}^d . Then Φ is n-rectifiable (i.e. $\Phi << \mathcal{H}^n$ and that $\Phi(\mathbb{R}^d \setminus E) = 0$ for some n-rectifiable set E) if and only if for Φ almost every x, $\Theta^n(\Phi, x) = \lim_{r \to 0} \frac{\Phi(B(x,r))}{\omega_n r^n}$ exists and

$$0 < \Theta^n(\Phi, x) < \infty.$$

Definition

Let Φ be a Radon measure on \mathbb{R}^d , x a point in its support such that $\Theta^n(\Phi, x)$ is positive and finite. We say that λ is a tangent measure of Φ at x and denote $\lambda \in Tan(\Phi, x)$ if $\lambda \neq 0$ and there exists a sequence of positive radii (r_i) , with $r_i \downarrow 0$ such that:

$$\Phi_{x,r_i} \rightharpoonup \lambda$$
 as $i \rightarrow \infty$,

where the convergence is the weak convergence of measures and

$$\Phi_{x,r}=r^{-n}T_{x,r}\Phi$$

is the push-forward of Φ by the homothecy $T_{x,r}(y) = \frac{y-x}{r}$.

Definition

Let μ be a Radon measure in \mathbb{R}^d . We say μ is *n*-uniform if there exists c > 0 such that for all $x \in spt(\mu)$, r > 0:

 $\mu(B(x,r))=cr^n.$

- (Kirchheim-Preiss) The support of an *n*-uniform measure is an analytic variety. Remark: By Lojasiewicz' structure theorem, its singular set has Hausdorff dimension at most (n-1).
- (Preiss) $n = 1, d \ge 1$: $\mathcal{H}^1 \sqcup \mathbb{R}$.
- (Preiss) $n = 2, d \ge 2$: $\mathcal{H}^2 \sqcup \mathbb{R}^2$.

- (Kirchheim-Preiss) The support of an *n*-uniform measure is an analytic variety. Remark: By Lojasiewicz' structure theorem, its singular set has Hausdorff dimension at most (n-1).
- (**Preiss**) $n = 1, d \ge 1$: $\mathcal{H}^1 \sqcup \mathbb{R}$.
- (**Preiss**) $n = 2, d \ge 2$: $\mathcal{H}^2 \sqcup \mathbb{R}^2$.

- (Kirchheim-Preiss) The support of an *n*-uniform measure is an analytic variety. Remark: By Lojasiewicz' structure theorem, its singular set has Hausdorff dimension at most (n-1).
- (Preiss) $n = 1, d \ge 1$: $\mathcal{H}^1 \sqcup \mathbb{R}$.
- (Preiss) n = 2, $d \ge 2$: $\mathcal{H}^2 \sqcup \mathbb{R}^2$.

• (Kowalski-Preiss) In \mathbb{R}^4 , consider the cone

$$C = \left\{ (x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2 \right\}.$$

Then the measure $\mathcal{H}^3 \llcorner C$ is 3-uniform.

(Kowalski-Preiss) d = n + 1 the support of an n-uniform measure in ℝⁿ⁺¹ can only be an n-plane or (up to rotation) ℝⁿ⁻³ × C

• (Kowalski-Preiss) In \mathbb{R}^4 , consider the cone

$$C = \left\{ (x_1, x_2, x_3, x_4); x_4^2 = x_1^2 + x_2^2 + x_3^2 \right\}.$$

Then the measure $\mathcal{H}^3 \llcorner C$ is 3-uniform.

(Kowalski-Preiss) d = n + 1 the support of an *n*-uniform measure in ℝⁿ⁺¹ can only be an *n*-plane or (up to rotation) ℝⁿ⁻³ × C

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?
- Can we classify them?

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?
- Can we classify them?

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?
- Can we classify them?

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?
- Can we classify them?

Definition

Let μ be an *n*-uniform measure in \mathbb{R}^d .

- We call x_0 a flat point of μ if there exists a unique *n*-plane V_{x_0} such that $Tan(\mu, x_0) = \{c\mathcal{H}^n \sqcup V_{x_0}; c > 0\}.$
- We denote by \mathcal{S}_{μ} the singular set of μ defined as:

$$\mathcal{S}_{\mu} = \{x \in spt(\mu); x \text{ is not a flat point }\}$$
 .

• We say μ is a conical *n*-uniform measure if for $A \subset \mathbb{R}^d$, r > 0,

$$\mu(rA)=r^n\mu(A).$$

Theorem (N. 2015)

Let μ be an n-uniform measure in \mathbb{R}^d , $n \ge 3$ and S_{μ} be its set of singularities. Then:

$$dim_{\mathcal{H}}(\mathcal{S}_{\mu}) \leq n-3.$$

This bound is sharp. Indeed, taking $\mu = \mathcal{H}^n\llcorner(\mathbb{R}^{n-3}\times C)$ we have

$$dim_{\mathcal{H}}(\mathcal{S}_{\mu}) = n - 3.$$

Theorem (N. 2015)

Let ν be a conical 3-uniform measure, $\Omega = spt(\nu) \cap \mathbb{S}^{d-1}$, and $\sigma = \mathcal{H}^2 \llcorner \Omega$. Then for all $x \in \Omega$, for $0 \le r \le 2$:

$$\sigma(B(x,r))=\pi r^2.$$

Theorem (N. 2015)

Let μ be an n-uniform measure in \mathbb{R}^d , $x_0 \in spt(\mu)$. Let ν be a tangent to μ at x_0 and let r_j be a sequence of positive radii so that

$$\mu_{x_0,r_j} \rightharpoonup \nu.$$

Then if $\{x_j\} \subset S_\mu$, there exists $y \in S_\nu$ so that:

$$\frac{x_j - x_0}{r_j} \to y$$

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?

- How large is the singular set of *n*-uniform measures?
- Are there other *n*-uniform measures?

Projects

- Obtain full description of 3-uniform conical measures.
- Are there other examples of 3-uniform measures?

Projects

- Obtain full description of 3-uniform conical measures.
- Are there other examples of 3-uniform measures?

Introduction Results Current projects

Thank you!

A. Dali Nimer (University of Washington) Singular sets of n-uniform measures