What are we trying to accomplish?

We would like to understand the geometric conditions that are imposed upon a non-atomic measure μ from the $L^2(\mu)$ boundedness of an associated Calderón-Zygmund operator.
Fix $s \in (0, d)$. A Calderón-Zygmund kernel of dimension s is an odd function $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}^d$ satisfying

$$|K(x)| \leq \frac{1}{|x|^s} \text{ and } |
abla K(x)| \leq \frac{1}{|x|^{s+1}}$$

for every $x \in \mathbb{R}^d \setminus \{0\}$.

Notation

We say that a CZO (with CZ kernel K) is bounded in $L^2(\mu)$ if

$$\sup_{\varepsilon > 0} \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d \setminus B(x, \varepsilon)} K(x-y)f(y) \, d\mu(y) \right|^2 \, d\mu(x) \leq C \|f\|^2_{L^2(\mu)}$$

for every $f \in L^2(\mu)$.

Ben Jaye (Kent State)
Reflectionless Measures
April 2, 2016 3 / 11
Fix $s \in (0, d)$. A Calderón-Zygmund kernel of dimension s is an odd function $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}^d$ satisfying

$$|K(x)| \leq \frac{1}{|x|^s} \quad \text{and} \quad |\nabla K(x)| \leq \frac{1}{|x|^{s+1}}$$

for every $x \in \mathbb{R}^d \setminus \{0\}$.

We say that a CZO (with CZ kernel K) is bounded in $L^2(\mu)$ if

$$\sup_{\varepsilon > 0} \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d \setminus B(x, \varepsilon)} K(x - y)f(y)\,d\mu(y) \right|^2 \,d\mu(x) \leq C\|f\|_{L^2(\mu)}^2$$

for every $f \in L^2(\mu)$.
What would we like to know about μ?

– If $s \in \mathbb{Z}$, then we would like to determine whether μ is supported in some collection of Lipschitz surfaces (assuming that supp(μ) has dimension s). (Jones '89, David-Semmes '91, '93, Mattila-Melnikov-Verdera '96, David-Mattila '98, David-Leger '99, Nazarov-Tolsa-Volberg '12, Hofmann-Martel-Mayboroda-Uriate-Tuero '12).

– If the CZO has non-integer dimension, then we would like to know sharp conditions on the density function of the measure. (Mateu-Prat-Verdera '05, Tolsa '11, Eiderman-Nazarov-Volberg '11, Reguera-Tolsa '14.)

Theorem (Jaye-Nazarov-Reguera-Tolsa, '16)
Fix $s \in (d-1, d)$. Suppose that the s-Riesz transform (the CZO with kernel $K(x) = |x|^{s+1}$) is bounded in $L^2(\mu)$, then there is a constant $C > 0$ such that
\[
\int_Q \int_0^{\infty} \left(\mu(B(x, r) \cap Q) r^s \right)^2 dr d\mu(x) \leq C \mu(Q)
\]
for every cube $Q \subset \mathbb{R}^d$.
What would we like to know about μ?

– If $s \in \mathbb{Z}$, then we would like to determine whether μ is supported in some collection of Lipschitz surfaces (assuming that $\text{supp}(\mu)$ has dimension s). (Jones ’89, David-Semmes ’91, ’93, Mattila-Melnikov-Verdera ’96, David-Mattila ’98, David-Leger ’99, Nazarov-Tolsa-Volberg ’12, Hofmann-Martel-Mayboroda-Uriate-Tuero ’12).

– If the CZO has non-integer dimension, then we would like to know sharp conditions on the density function of the measure. (Mateu-Prat-Verdera ’05, Tolsa ’11, Eiderman-Nazarov-Volberg ’11, Reguera-Tolsa ’14.)
What would we like to know about \(\mu \)?

– If \(s \in \mathbb{Z} \), then we would like to determine whether \(\mu \) is supported in some collection of Lipschitz surfaces (assuming that \(\text{supp}(\mu) \) has dimension \(s \)). (Jones ’89, David-Semmes ’91, ’93, Mattila-Melnikov-Verdera ’96, David-Mattila ’98, David-Leger ’99, Nazarov-Tolsa-Volberg ’12, Hofmann-Martel-Mayboroda-Uriate-Tuero ’12).

– If the CZO has non-integer dimension, then we would like to know sharp conditions on the density function of the measure. (Mateu-Prat-Verdera ’05, Tolsa ’11, Eiderman-Nazarov-Volberg ’11, Reguera-Tolsa ’14.)

Theorem (Jaye-Nazarov-Reguera-Tolsa, ’16)

Fix \(s \in (d-1, d) \). Suppose that the \(s \)-Riesz transform (the CZO with kernel \(K(x) = \frac{x}{|x|^{s+1}} \)) is bounded in \(L^2(\mu) \), then there is a constant \(C > 0 \) such that

\[
\int_Q \int_0^\infty \left(\frac{\mu(B(x, r) \cap Q)}{r^s} \right)^2 \frac{dr}{r} \, d\mu(x) \leq C \mu(Q)
\]

for every cube \(Q \subset \mathbb{R}^d \).
What is a reflectionless measure (associated to a integral kernel K)?

– It is a measure for which the potential

$$\int_{\mathbb{R}^d} K(x - y) d\mu(y)$$

is constant for x on the support of μ (when considered in a suitable weak sense).

Examples

– The Hausdorff measure of a k-plane is a reflectionless measure for any CZO.

– Periodic configurations of k-planes is also reflectionless.
What is a reflectionless measure (associated to a integral kernel K)?

- It is a measure for which the potential

$$\int_{\mathbb{R}^d} K(x - y) d\mu(y)$$

is constant for x on the support of μ (when considered in a suitable weak sense).

Examples

- The Hausdorff measure of a k-plane is a reflectionless measure for any CZO.
What is a reflectionless measure (associated to a integral kernel K)?

– It is a measure for which the potential

$$\int_{\mathbb{R}^d} K(x - y) d\mu(y)$$

is constant for x on the support of μ (when considered in a suitable weak sense).

Examples

– The Hausdorff measure of a k-plane is a reflectionless measure for any CZO.
– Periodic configurations of k-planes is also reflectionless.
What is a reflectionless measure (associated to a integral kernel \(K\))?

– It is a measure for which the potential

\[
\int_{\mathbb{R}^d} K(x - y) d\mu(y)
\]

is constant for \(x\) on the support of \(\mu\) (when considered in a suitable weak sense).

Examples

– The Hausdorff measure of a \(k\)-plane is a reflectionless measure for any CZO.
– Periodic configurations of \(k\)-planes is also reflectionless.
More Information

– If one can, for a given CZO, describe the reflectionless measures associated to it in terms of the two kinds of examples, then one can prove structural theorems.
More Information

– If one can, for a given CZO, describe the reflectionless measures associated to it in terms of the two kinds of examples, then one can prove structural theorems.

– Several general results (for both integer and non-integer homogeneity CZOs) in this spirit appear in *Reflectionless Measures for Calderón-Zygmund Operators II: Wolff potentials and rectifiability*. (J-Nazarov, arXiv September 2015.)
More Information

– If one can, for a given CZO, describe the reflectionless measures associated to it in terms of the two kinds of examples, then one can prove structural theorems.

– Several general results (for both integer and non-integer homogeneity CZOs) in this spirit appear in *Reflectionless Measures for Calderón-Zygmund Operators II: Wolff potentials and rectifiability.* (J-Nazarov, arXiv September 2015.)

– We shall present a result in the opposite direction.
Consider the kernel \(K(z) = \frac{1}{|z|} \left(\frac{\bar{z}}{|z|} \right)^3 \).

Then the 2 dimensional Lebesgue measure restricted to a ball \(B(z_0, r) \) is reflectionless in the sense that
\[
\int_{B(z_0, r)} K(z - \omega) \, dm(\omega) = 0 \quad \text{for all} \quad z \in B(z_0, r).
\]

There is a one dimensional purely unrectifiable measure \(\mu \) for which the singular integral operator associated to the kernel \(K(z) = \bar{z} z^2 \) is bounded in \(L^2(\mu) \).

Compare to David-Leger: If the Cauchy transform of a 1-dimensional non-atomic measure \(\mu \) is bounded in \(L^2(\mu) \), then the support of \(\mu \) is rectifiable. This result was generalized by Chousionis, Mateu, Prat, Tolsa to other kernels.
Consider the kernel $K(z) = \frac{1}{|z|} \left(\frac{\bar{z}}{|z|} \right)^3$.

Then the 2 dimensional Lebesgue measure restricted to a ball $B(z_0, r)$ is reflectionless in the sense that

$$\int_{B(z_0, r)} K(z - \omega) dm_2(\omega) = 0 \text{ for all } z \in B(z_0, r).$$
Consider the kernel \(K(z) = \frac{1}{|z|} \left(\frac{\overline{z}}{|z|} \right)^3 \).

Then the 2 dimensional Lebesgue measure restricted to a ball \(B(z_0, r) \) is reflectionless in the sense that

\[
\int_{B(z_0, r)} K(z - \omega) dm_2(\omega) = 0 \text{ for all } z \in B(z_0, r).
\]

J-Nazarov. There is a one dimensional purely unrectifiable measure \(\mu \) for which the singular integral operator associated to the kernel \(K(z) = \frac{\overline{z}}{z^2} \) is bounded in \(L^2(\mu) \).
Consider the kernel $K(z) = \frac{1}{|z|} \left(\frac{\bar{z}}{|z|} \right)^3$. Then the 2 dimensional Lebesgue measure restricted to a ball $B(z_0, r)$ is reflectionless in the sense that

$$
\int_{B(z_0, r)} K(z - \omega) dm_2(\omega) = 0 \text{ for all } z \in B(z_0, r).
$$

J-Nazarov. There is a one dimensional purely unrectifiable measure μ for which the singular integral operator associated to the kernel $K(z) = \frac{\bar{z}}{z^2}$ is bounded in $L^2(\mu)$.

Compare to **David-Leger:** If the Cauchy transform of a 1-dimensional non-atomic measure μ is bounded in $L^2(\mu)$, then the support of μ is rectifiable. This result was generalized by **Chousionis, Mateu, Prat, Tolsa** to other kernels.
Construction of the measure

Take very fast decaying sequence \((r_n)_n\). First put \(1/r_1\) roughly equally spaces discs \(D^{(1)}_k\) of radius \(r_1\) in \(B(0, 1)\). Then put \(r_1/r_2\) roughly equally spaced discs \(D^{(2)}_k\) of radius \(r_2\) in each of the discs of radius \(r_1\). Continue in this manner......
Construction of the measure

Take very fast decaying sequence \((r_n)_n\). First put \(1/r_1\) roughly equally spaced discs \(D_k^{(1)}\) of radius \(r_1\) in \(B(0, 1)\). Then put \(r_1/r_2\) roughly equally spaced discs \(D_k^{(2)}\) of radius \(r_2\) in each of the discs of radius \(r_1\). Continue in this manner......
Construction of the measure

Consider probability measures $\mu_n = \frac{1}{\pi} \sum_j \chi_{D_j^{(n)}} \frac{1}{r_n} m_2$.

Pass to a subsequence with a limit. Get a limit (probability) measure μ, supported on the Cantor dust (let's call it K).

We show that, for every generation n, and $z \in \text{supp}(\mu)$,

$$\left| \int D_n(z) \setminus D_{n+1}(z) K(z - \xi) \, d\mu(\xi) \right| \leq \sqrt{r_{n+1} r_n}.$$

Then the $T(1)$-theorem ensures that the CZO associated to K is bounded in $L^2(\mu)$, provided that

$$\sum_{n=1}^{\infty} \sqrt{r_{n+1} r_n} < \infty.$$

For our dust K, $H^1(K \cap \Gamma) = 0$ for any rectifiable curve Γ (just density considerations).
Construction of the measure

Consider probability measures $\mu_n = \frac{1}{\pi} \sum_j \chi_{D_j^{(n)}} \frac{1}{r_n} m_2$.

Pass to a subsequence with a limit. Get a limit (probability) measure μ, supported on the Cantor dust (let’s call it K).
Construction of the measure

Consider probability measures $\mu_n = \frac{1}{\pi} \sum_j \chi_{D_j^{(n)}} \frac{1}{r_n} m_2$.

Pass to a subsequence with a limit. Get a limit (probability) measure μ, supported on the Cantor dust (let’s call it K).

We show that, for every generation n, and $z \in \text{supp}(\mu)$

$$\left| \int_{D^n(z) \setminus D^{(n+1)}(z)} K(z - \xi) d\mu(\xi) \right| \leq \sqrt{\frac{r_n+1}{r_n}}.$$

Then the $T(1)$-theorem ensures that the CZO associated to K is bounded in $L^2(\mu)$, provided that $\sum_{n=1}^{\infty} \sqrt{\frac{r_n+1}{r_n}} < \infty$.

For our dust K, $H_1(K \cap \Gamma) = 0$ for any rectifiable curve Γ (just density considerations).
Construction of the measure

Consider probability measures $\mu_n = \frac{1}{\pi} \sum_j \chi_{D_j^{(n)}} \frac{1}{r_n} m_2$.

Pass to a subsequence with a limit. Get a limit (probability) measure μ, supported on the Cantor dust (let’s call it K).

We show that, for every generation n, and $z \in \text{supp}(\mu)$

\[
\left| \int_{D^n(z) \setminus D^{(n+1)}(z)} K(z - \xi) d\mu(\xi) \right| \leq \sqrt{\frac{r_{n+1}}{r_n}}.
\]

Then the $T(1)$-theorem ensures that the CZO associated to K is bounded in $L^2(\mu)$, provided that $\sum_{n=1}^{\infty} \sqrt{\frac{r_{n+1}}{r_n}} < \infty$.
Construction of the measure

Consider probability measures $\mu_n = \frac{1}{π} \sum_j \chi_{D_j^{(n)}} \frac{1}{r_n} m_2$.

Pass to a subsequence with a limit. Get a limit (probability) measure μ, supported on the Cantor dust (let’s call it K).

We show that, for every generation n, and $z \in \text{supp}(\mu)$

$$\left| \int_{D^n(z) \setminus D^{(n+1)}(z)} K(z - \xi) d\mu(\xi) \right| \leq \sqrt{\frac{r_n+1}{r_n}}.$$

Then the $T(1)$-theorem ensures that the CZO associated to K is bounded in $L^2(\mu)$, provided that $\sum_{n=1}^{\infty} \sqrt{\frac{r_n+1}{r_n}} < \infty$.

For our dust K, $\mathcal{H}^1(K \cap \Gamma) = 0$ for any rectifiable curve Γ (just density considerations).
Remark 1. For the Cantor dust measure \(\mu \), the limit

\[
\lim_{\varepsilon \to 0} \int_{\mathbb{C} \setminus B(z,r)} \frac{z - \omega}{(z - \omega)^2} d\mu(\omega)
\]

fails to exist for \(\mu \)-almost every \(z \in \mathbb{C} \). (That is, principal values fail to exist almost everywhere.)
Remarks!

Remark 1. For the Cantor dust measure μ, the limit

$$\lim_{\varepsilon \to 0} \int_{\mathbb{C} \setminus B(z,r)} \frac{z - \omega}{(z - \omega)^2} d\mu(\omega)$$

fails to exist for μ-almost every $z \in \mathbb{C}$. (That is, principal values fail to exist almost everywhere.)

Remarks!

Open Problem 1. Does there exist an AD-regular measure μ (this should satisfy, for some constant $C > 0$, $\frac{1}{C} r \leq \mu(B(x, r)) \leq C r$ for all $x \in \text{supp}(\mu)$ and small $r > 0$) supported on an unrectifiable set K for which the three revolutions singular integral operator is bounded in $L^2(\mu)$?
The End