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My research interests lie in the area of moduli theory of curves and abelian
varieties. Under supervision of Professor Yum-Tong Siu, and inspired by
effective techniques in complex algebraic geometry, I have performed research
on effective Schottky problem, moduli spaces of Riemann surfaces, a.k.a.
algebraic curves (Mg for closed surfaces of genus g) and theta functions,
and am planning to continue the studies in these areas as well as in related
areas of mathematical physics, complex algebraic geometry and some aspects
of modular forms in several variables over C. My thesis will be entitled
“Differential and algebraic equations for the Jacobian locus.”

The Riemann-Schottky (or simply Schottky) problem, first posed by
Schottky in 1880s, is the problem of characterizing Jacobians among princi-
pally polarized abelian varieties (ppavs), i.e. describing the image of Mg in
Ag by the Jacobian embedding J : [X] 7→ [J(X)], where J(X) denotes the
Jacobian of a Riemann surface X, and Ag stands for the moduli space of
ppavs. The problem has been extensively studied ever since, and numerous
solutions have been obtained. However, none of these solutions are effective:
given an explicit ppav, it is impossible to apply them to determine whether
it is a Jacobian or not. The purpose of my thesis research is to make the so-
lution effective, so that given an explicit ppav, there is a process to establish
whether it is a Jacobian or not.

To solve the Schottky problem we first need to introduce coordinates on
Ag, and then attempt to describe Jg := J(Mg) in these coordinates. To
get such coordinates, for any ppav A we can define 2g theta functions of the
second order on A: these are sections of some line bundle (usually denoted
2θ) on A, and are given by the following formula:

Θ[ε](z, τ) :=
∑
m∈Zg

e2πi((m+ε/2,τ(m+ε/2))+(m+ε/2,z)),

where τ is an element of Siegel upper half-space (i.e. a symmetric complex
g × g matrix with positive-definite imaginary part) corresponding to the
abelian variety A, z ∈ Cg and ε ∈ Zg2 is a vector of g zeros and ones used
to label theta functions. These theta functions of the second order linearly
generate the space of sections of 2θ over C.

It is known that the theta constants Θ[ε](τ) := Θ[ε](0, τ) embed the
moduli space of ppavs into a complex projective space of dimension 2g − 1
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(denote this map by θ2 : Ag → P
2g−1), and that the image θ2(Jg) is an

algebraic subvariety in P2g−1. The equations defining the image θ2(Ag) are
not known explicitly, and in fact finding them would provide a solution to
the Schottky problem. I have proved the following result about this variety:

Theorem ([Gr2]). The algebraic degree of θ2(Jg) is less than cg2g
2
g2g for

some explicit constant c.

Conjecturally this bound gives the right order of growth for the degree,
and to prove it, I am currently working on obtaining a lower bound, which
constitutes a part of my further research goals.

To compute the degree, first note that the degree of a subvariety in P2g−1

is equal to the integral over it of the top power of the curvature form of the
Fubini-Studi metric. The pullback of this form to Mg is equal to λ/2, one
half of the first Chern class of the Hodge bundle onMg — the g-dimensional
vector bundle with fiber over a point representing a Riemann surface being
the vector space of all holomorphic differentials on this surface.

Then one would want to say that the integral
∫
Mg

λ3g−3 of the top power

of the form over Mg is the same as the cohomological intersection number
〈λ3g−3〉Mg

of the top power of its cohomology class on the (Deligne-Mumford)
compactification of the moduli space. However, this may not be true, as
the form λ1 that we are dealing with has singularities on the boundary of
Mg, and thus the cohomology class is the class of a current, for which the
cohomological and analytic intersection numbers may differ.

To deal with this problem, we smooth out the current λ near the boundary
∂Mg to a smooth form µ. Then I use the explicit knowledge of the growth
behavior of λ near the boundary to bound the difference

∫
λ3g−3 − µ3g−3 by

cgg2g for some constant c. Then the problem is reduced to computing
∫
µ3g−3,

which, since µ is smooth onMg, is equal to the corresponding cohomological
intersection number.

The second cohomology of the moduli space Mg is known (see [Wo])
to be generated by the classes of boundary divisors and the class ω of the
Kähler form of the Weil-Petersson metric. As the boundary divisors are iso-
morphic to moduli spaces of surfaces of lower genera, computing an intersec-
tion number involving the boundary divisors can be performed by induction
in genus, and it seems that the intersection number hardest to compute is
〈ω3g−3〉 =

∫
ω3g−3 (in [Fab] Faber develops an algorithm to compute all the

intersection numbers, which is implementable for low genera).
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In paper [Gr1] I have used Penner’s [Pe] decorated Teichmüller theory and
a combinatorial description of the moduli space of curves to obtain an explicit
upper bound on Weil-Petersson volumes of the moduli spaces of punctured
Riemann surfaces Mg,n for fixed number of punctures and genus going to
infinity:

Theorem ([Gr1]). For some explicit constant c, and g sufficiently large the
following inequality holds for the volumes: vol(Mg,n) ≤ cgg2g.

Using effective estimates from intersection theory on the moduli space,
Schumacher and Trapani [ScTr] have obtained recursive lower bounds on
Weil-Petersson volumes, which together with my and Penner’s original re-
sults (see [Pe]) imply that my upper bound for the volumes has the correct
leading order growth.

Applying further effective techniques in intersection theory, together with
estimates of self-intersection numbers in terms of intersection number with a
nef divisor, and leaning heavily on the results on Weil-Petersson volumes de-
scribed above, the bound 〈µ3g−3〉 < cgg2g, and thus a bound on the algebraic
degree of θ2(Jg), is obtained.

The techniques developed in the computations above, and the bounds ob-
tained, allow one in principle to approach the problem of determining which
divisors on the compactificationMg are effective. Studying the effective cone
of Mg has been an outstanding research problem in the past 20 years, with
extensive work performed by Mumford, Harris, Morrison, Moriwaki, Keel
and others: see [HaMu], [HaMo], [Mo], [Ke] and references therein. I am
planning to apply the effective techniques and the explicit knowledge of cer-
tain two-forms on the moduli space to further this study, with a view towards
results in intersection and Morse theory of the moduli spaces.

In another approach to Schottky problem, one starts with the Kadomtsev-
Petviashvili (KP) equation, which was shown by Shiota [Sh] to provide a
solution to Schottky problem: it is a differential equation for theta func-
tion, and if the theta function of a ppav satisfies it, the ppav is a Jacobian.
However, if given an explicit ppav (say, as a period matrix τ in the Siegel
upper half-space), it is not clear how to verify whether it is a Jacobian or
not using the KP equation. There are two problems for such a verification.
First, the KP equation involves 3g + 1 unknown parameters, which need to
be eliminated. Secondly, verifying the KP amounts to verifying the vanishing
of a certain expression in theta constants and their derivatives. Theta con-
stants and their derivatives are given by infinite power series in τ , and thus
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verifying vanishing of such an expression requires checking vanishing of each
of infinitely many terms in power series. As derivatives of theta constants
are not modular forms, we cannot a priori bound the degree of the terms
for which we need to check vanishing (such results for modular forms are
known).

To deal with the first problem, I have derived a system of second-order
parameterless differential equations for theta constants of any ppav.

Theorem ([Gr4]). Considering the first derivatives of theta constants with
respect to τ as rank one tensors, second derivatives as rank two tensors, and
multiplying everything tensorly, the following equations hold for any ppav
(not necessarily a Jacobian) with a period matrix τ :

∀ε
∑
σ∈Zg2

Θ[σ + ε](τ)2Θ[σ](τ)∂2Θ[σ](τ) =

=
∑
σ∈Zg2

Θ[σ+ε](τ)2∂Θ[σ](τ)∂Θ[σ](τ)+2Θ[σ+ε](τ)Θ[σ](τ)∂Θ[σ+ε](τ)∂Θ[σ](τ).

I showed this system of equations to be equivalent to Ohyama’s equations
in [Oh] and to all the equations contained in [Zu]. Using these equations to
express (non-linearly) second derivatives of theta constants in terms of the
first, we can rewrite the KP as a system of first-order differential equations
for theta constants with parameters. Using resultants and effective Nullstel-
lensatz (see [EiLa]) we can then eliminate the unknowns to derive a system
of non-linear first-order differential equations for theta constants of second
order equivalent to the KP, which is thus explicit and yields itself to po-
tential verification for a given period matrix. I plan to exhibit this work as
[Gr4] and to compose my thesis of it together with [Gr1], [Gr2], and a re-
view of connections between differential-geometric and intersection-theoretic
approaches and techniques involved.

However, the second problem — of how to verify a differential identity for
theta constants — remains. Using the results of [Gr2] one can a priori bound
the degree of the algebraic equations for the Jacobian locus, and thus stop
the term-by-term (in power series expansion in τ) verification of a differential
identity for theta constants when the degree of the term is sufficiently high.
This gives an effective process for solving the Schottky problem for an explicit
ppav:
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Theorem ([Gr3]). Using the bound for the degree of the Jacobian locus and
effective Nullstellensatz, the KP equation for the theta function can be effec-
tively rewritten as a finite system of algebraic equations for theta constants.

Though the procedure used to derive these algebraic equations is effective,
it is so complicated that actually applying it, even in low genus, is very hard.
I am planning to pursue this idea with the goal of obtaining the explicit
algebraic equations between theta constants defining the Jacobian locus in
genus five, the lowest genus for which such equations are not known (there
are no equations for g ≤ 3 and the unique equation in genus four was already
known to Schottky).

The question of determining differential and algebraic equations for theta
constants of general abelian varieties is also still open: knowing such equa-
tions would then allow one to write explicitly the equations for theta con-
stants of Jacobians following from Schottky-Jung proportionalities (see [Far]
for a review of these ideas). The question itself has a significance for the
theory of modular forms of several variables, where one wants to find the dif-
ferential operators mapping modular forms (or some sets of modular forms)
of some weight to modular forms of some other weight. Much work has been
done in that direction in dimension one by Shimura [Shi], Resnikoff [Re] and
others, and I would like to perform research with the goal of obtaining an
effective bound on the dimension of the jet space of modular forms. Such a
bound would then enable us to estimate the order of the differential operators
involved, and perhaps to obtain explicitly such differential operators.
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