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Setting
Consider a bounded domain Ω ⊂ Cn and a domain U ⊂ Cm.
Let φ be a weight function on Ω× U which is smooth up to the boundary,
define φt(·) := φ(·, t), and let

L2φt(Ω) :=
{
f : Ω → C;

∫
Ω
|f|2 e−φtdVΩ < +∞

}
and H2

φt(Ω) := L2φt(Ω) ∩ O(Ω).

Since Ω and U are bounded and φ is smooth up to the boundary on Ω× U,
the Hilbert spaces H2

φt(Ω) are independent of t as subspaces of O(Ω).
Thus one has a vector bundle E over U whose fiber at t ∈ U is H2

φt(Ω). This
vector bundle is trivial as a holomorphic vector bundle, but has a non-trivial
Hermitian metric given by the L2φt-norm on H2

φt(Ω) in the fiber over t.
The goal is to find conditions under which the curvature of E is positive.
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Berndtsson’s Nakano-positivity result

Theorem (Berndtsson)

If Ω is pseudoconvex and φ is (strictly) plurisubharmonic on Ω× U, then the
holomorphic hermitian bundle

(
E, ∥·∥φt

)
is (strictly) Nakano-positive.

Pseudoconvex: C-version of a convex domain.

Plurisubharmonic: C-version of a convex function, meaning
[

∂2φ

∂zi∂zj

]
i,j
is

positive definite.
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A brief discussion of positivity

In complex geometry, positive curvature is a notion analogous to convexity.
Strongest version of such positivity is called Nakano-positivity. Weakest
version is Griffiths positivity.
If the base U has dimension 1, both versions coincide.
E is Griffiths-positive ⇐⇒ log

(
∥ξ∥2

)
is plurisubharmonic for every

holomorphic section ξ of E∗.
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Applications of Berndtsson’s theorem

Berdtsson’s theorem has two important applications:
1. Convexity of the Mabuchi K-energy along geodesics in the space of Kähler
metrics. (Berndtsson.)

2. Crucial tool in the proof of an optimal L2 extension theorem for
holomorphic functions. (Berndtsson-Lempert.)

• L2 extension is a fundamental result in complex analysis and geometry.
• For example, useful in arguments involving induction on dimension.
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Main result

Theorem (A.)

If Ω is pseudoconvex and has a function η such that −e−η is plurisubharmonic,
then

(
E, ∥·∥φt

)
is Nakano-positive, provided that the C-Hessian of φ has a

precise negative lower bound determined by η.

In particular, if Ω has a negative plurisubharmonic function η, then φ does
not have to be plurisubharmonic.
Remark: Every bounded pseudoconvex domain has at least one such
function η.
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The main theorem holds (and was proved) in the setting of Stein manifolds.
Ω a bounded pseudoconvex in a Stein manifold.
Holomorphic functions replaced by holomorphic sections of a line bundle.
Weights replaced by metrics for line bundle.
The assumptions on the Hessian of φ replaced by corresponding curvature
assumptions on the metrics for the line bundle.
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Example: the unit ball in Cn

The function given by η(z) = − log(1− |z|2) on the unit ball Bn(1) ⊂ Cn is
negative and plurisubharmonic. Its Hessian is (up to a constant) ωB, the
Bergman metric for Bn(1).

Example

Let φ be defined on Bn(1)× D by φ(z, t) = 1

2
log(1− |z|2) + |t|2. Then:

HessC(φ) = −1

2
ωB(z) + ωE(t)

is not positive-definite but still satisfies the hypotheses of our theorem.
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Going further

Have proved a theorem on the variation of Bergman kernels (important
objects in the theory of several complex variables).
The next goal is to prove an L2 extension theorem under weakened
positivity hypotheses.

• Currently exploring the Berndtsson-Lempert technique.
• Will definitely require a modification.
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Thank you for your attention.
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