Strong Curvature Positivity of Holomorphic Hilbert Bundles

E. M. Ainasse

Stony Brook Mathematics Department and Institute for Mathematical Sciences April 1st, 2020

Strong Curvature Positivity of Holomorphic Hilbert Bundles

- Consider a bounded domain $\Omega \subset \mathbb{C}^n$ and a domain $U \subset \mathbb{C}^m$.
- Let φ be a weight function on $\Omega \times U$ which is smooth up to the boundary, define $\varphi_t(\cdot) := \varphi(\cdot, t)$, and let

$$L^2_{\varphi_t}(\Omega) := \left\{ f \colon \Omega \to \mathbb{C}; \int_{\Omega} |f|^2 \, e^{-\varphi_t} dV_{\Omega} < +\infty \right\} \text{ and } \mathcal{H}^2_{\varphi_t}(\Omega) := L^2_{\varphi_t}(\Omega) \cap \mathcal{O}(\Omega).$$

- Since Ω and U are bounded and φ is smooth up to the boundary on $\Omega \times U$, the Hilbert spaces $\mathcal{H}^2_{\varphi_t}(\Omega)$ are independent of t as subspaces of $\mathcal{O}(\Omega)$.
- Thus one has a vector bundle *E* over *U* whose fiber at $t \in U$ is $\mathcal{H}^2_{\varphi_t}(\Omega)$. This vector bundle is trivial as a holomorphic vector bundle, but has a non-trivial Hermitian metric given by the $L^2_{\varphi_t}$ -norm on $\mathcal{H}^2_{\varphi_t}(\Omega)$ in the fiber over *t*.
- The goal is to find conditions under which the curvature of *E* is positive.

- Consider a bounded domain $\Omega \subset \mathbb{C}^n$ and a domain $U \subset \mathbb{C}^m$.
- Let φ be a weight function on $\Omega \times U$ which is smooth up to the boundary, define $\varphi_t(\cdot) := \varphi(\cdot, t)$, and let

$$L^2_{\varphi_t}(\Omega) := \left\{ f \colon \Omega \to \mathbb{C}; \int_{\Omega} |f|^2 \, e^{-\varphi_t} dV_{\Omega} < +\infty \right\} \text{ and } \mathcal{H}^2_{\varphi_t}(\Omega) := L^2_{\varphi_t}(\Omega) \cap \mathcal{O}(\Omega).$$

- Since Ω and U are bounded and φ is smooth up to the boundary on $\Omega \times U$, the Hilbert spaces $\mathcal{H}^2_{\omega_t}(\Omega)$ are independent of t as subspaces of $\mathcal{O}(\Omega)$.
- Thus one has a vector bundle *E* over *U* whose fiber at $t \in U$ is $\mathcal{H}^2_{\varphi_t}(\Omega)$. This vector bundle is trivial as a holomorphic vector bundle, but has a non-trivial Hermitian metric given by the $L^2_{\varphi_t}$ -norm on $\mathcal{H}^2_{\varphi_t}(\Omega)$ in the fiber over *t*.
- The goal is to find conditions under which the curvature of *E* is positive.

- Consider a bounded domain $\Omega \subset \mathbb{C}^n$ and a domain $U \subset \mathbb{C}^m$.
- Let φ be a weight function on $\Omega \times U$ which is smooth up to the boundary, define $\varphi_t(\cdot) := \varphi(\cdot, t)$, and let

$$L^2_{\varphi_t}(\Omega) := \left\{ f \colon \Omega \to \mathbb{C}; \int_{\Omega} |f|^2 \, e^{-\varphi_t} dV_{\Omega} < +\infty \right\} \text{ and } \mathcal{H}^2_{\varphi_t}(\Omega) := L^2_{\varphi_t}(\Omega) \cap \mathcal{O}(\Omega).$$

- Since Ω and U are bounded and φ is smooth up to the boundary on $\Omega \times U$, the Hilbert spaces $\mathcal{H}^2_{\varphi_t}(\Omega)$ are independent of t as subspaces of $\mathcal{O}(\Omega)$.
- Thus one has a vector bundle *E* over *U* whose fiber at $t \in U$ is $\mathcal{H}^2_{\varphi_t}(\Omega)$. This vector bundle is trivial as a holomorphic vector bundle, but has a non-trivial Hermitian metric given by the $L^2_{\varphi_t}$ -norm on $\mathcal{H}^2_{\varphi_t}(\Omega)$ in the fiber over *t*.

The goal is to find conditions under which the curvature of *E* is positive.

- Consider a bounded domain $\Omega \subset \mathbb{C}^n$ and a domain $U \subset \mathbb{C}^m$.
- Let φ be a weight function on $\Omega \times U$ which is smooth up to the boundary, define $\varphi_t(\cdot) := \varphi(\cdot, t)$, and let

$$L^2_{\varphi_t}(\Omega) := \left\{ f \colon \Omega \to \mathbb{C}; \int_{\Omega} |f|^2 \, e^{-\varphi_t} dV_{\Omega} < +\infty \right\} \text{ and } \mathcal{H}^2_{\varphi_t}(\Omega) := L^2_{\varphi_t}(\Omega) \cap \mathcal{O}(\Omega).$$

- Since Ω and U are bounded and φ is smooth up to the boundary on $\Omega \times U$, the Hilbert spaces $\mathcal{H}^2_{\varphi_t}(\Omega)$ are independent of t as subspaces of $\mathcal{O}(\Omega)$.
- Thus one has a vector bundle *E* over *U* whose fiber at $t \in U$ is $\mathcal{H}^2_{\varphi_t}(\Omega)$. This vector bundle is trivial as a holomorphic vector bundle, but has a non-trivial Hermitian metric given by the $L^2_{\varphi_t}$ -norm on $\mathcal{H}^2_{\varphi_t}(\Omega)$ in the fiber over *t*.
- The goal is to find conditions under which the curvature of *E* is positive.

Berndtsson's Nakano-positivity result

Theorem (Berndtsson)

If Ω is pseudoconvex and φ is (strictly) plurisubharmonic on $\Omega \times U$, then the holomorphic hermitian bundle $(E, \|\cdot\|_{\varphi_t})$ is (strictly) Nakano-positive.

- <u>Pseudoconvex</u>: C-version of a convex domain.
- Plurisubharmonic: C-version of a convex function, meaning $\left\lfloor \frac{\partial^2 \varphi}{\partial z_i \partial z_j} \right\rfloor_{i,j}$ is positive definite.

Berndtsson's Nakano-positivity result

Theorem (Berndtsson)

If Ω is pseudoconvex and φ is (strictly) plurisubharmonic on $\Omega \times U$, then the holomorphic hermitian bundle $(E, \|\cdot\|_{\varphi_t})$ is (strictly) Nakano-positive.

- <u>Pseudoconvex:</u> C-version of a convex domain.
- <u>Plurisubharmonic:</u> C-version of a convex function, meaning positive definite.

$$\left[\frac{\partial^2 \varphi}{\partial z_i \partial z_j}\right]_{i,j}$$
 is

■ In complex geometry, positive curvature is a notion analogous to convexity.

- Strongest version of such positivity is called Nakano-positivity. Weakest version is Griffiths positivity.
- If the base *U* has dimension 1, both versions coincide.
- **E** is Griffiths-positive $\iff \log(||\xi||^2)$ is plurisubharmonic for every holomorphic section ξ of E^* .

- In complex geometry, positive curvature is a notion analogous to convexity.
- Strongest version of such positivity is called Nakano-positivity. Weakest version is Griffiths positivity.
- If the base *U* has dimension 1, both versions coincide.
- **E** is Griffiths-positive $\iff \log(||\xi||^2)$ is plurisubharmonic for every holomorphic section ξ of E^* .

- In complex geometry, positive curvature is a notion analogous to convexity.
- Strongest version of such positivity is called Nakano-positivity. Weakest version is Griffiths positivity.
- If the base *U* has dimension 1, both versions coincide.

E is Griffiths-positive $\iff \log(||\xi||^2)$ is plurisubharmonic for every holomorphic section ξ of E^* .

- In complex geometry, positive curvature is a notion analogous to convexity.
- Strongest version of such positivity is called Nakano-positivity. Weakest version is Griffiths positivity.
- If the base *U* has dimension 1, both versions coincide.
- *E* is Griffiths-positive $\iff \log(||\xi||^2)$ is plurisubharmonic for every holomorphic section ξ of *E*^{*}.

Applications of Berndtsson's theorem

Berdtsson's theorem has two important applications:

- 1. Convexity of the Mabuchi *K*-energy along geodesics in the space of Kähler metrics. (Berndtsson.)
- 2. Crucial tool in the proof of an optimal *L*² extension theorem for holomorphic functions. (Berndtsson-Lempert.)
 - *L*² extension is a fundamental result in complex analysis and geometry.
 - For example, useful in arguments involving induction on dimension.

Applications of Berndtsson's theorem

Berdtsson's theorem has two important applications:

- 1. Convexity of the Mabuchi *K*-energy along geodesics in the space of Kähler metrics. (Berndtsson.)
- 2. Crucial tool in the proof of an optimal L^2 extension theorem for holomorphic functions. (Berndtsson-Lempert.)
 - L² extension is a fundamental result in complex analysis and geometry.
 - For example, useful in arguments involving induction on dimension.

Applications of Berndtsson's theorem

Berdtsson's theorem has two important applications:

- 1. Convexity of the Mabuchi *K*-energy along geodesics in the space of Kähler metrics. (Berndtsson.)
- 2. Crucial tool in the proof of an optimal L^2 extension theorem for holomorphic functions. (Berndtsson-Lempert.)
 - L² extension is a fundamental result in complex analysis and geometry.
 - For example, useful in arguments involving induction on dimension.

Main result

Theorem (A.)

If Ω is pseudoconvex and has a function η such that $-e^{-\eta}$ is plurisubharmonic, then $(E, \|\cdot\|_{\varphi_t})$ is Nakano-positive, provided that the \mathbb{C} -Hessian of φ has a precise negative lower bound determined by η .

- In particular, if Ω has a negative plurisubharmonic function η , then φ does not have to be plurisubharmonic.
- **Remark:** Every bounded pseudoconvex domain has at least one such function η .

- $\blacksquare \ \Omega$ a bounded pseudoconvex in a Stein manifold.
- Holomorphic functions replaced by holomorphic sections of a line bundle.
- Weights replaced by metrics for line bundle.
- \blacksquare The assumptions on the Hessian of φ replaced by corresponding curvature assumptions on the metrics for the line bundle.

- $\blacksquare \ \Omega$ a bounded pseudoconvex in a Stein manifold.
- Holomorphic functions replaced by holomorphic sections of a line bundle.
- Weights replaced by metrics for line bundle.
- \blacksquare The assumptions on the Hessian of φ replaced by corresponding curvature assumptions on the metrics for the line bundle.

- $\blacksquare \ \Omega$ a bounded pseudoconvex in a Stein manifold.
- Holomorphic functions replaced by holomorphic sections of a line bundle.
- Weights replaced by metrics for line bundle.
- \blacksquare The assumptions on the Hessian of φ replaced by corresponding curvature assumptions on the metrics for the line bundle.

- $\blacksquare \ \Omega$ a bounded pseudoconvex in a Stein manifold.
- Holomorphic functions replaced by holomorphic sections of a line bundle.
- Weights replaced by metrics for line bundle.
- The assumptions on the Hessian of φ replaced by corresponding curvature assumptions on the metrics for the line bundle.

Example: the unit ball in \mathbb{C}^n

The function given by $\eta(z) = -\log(1 - |z|^2)$ on the unit ball $\mathbb{B}_n(1) \subset \mathbb{C}^n$ is negative and plurisubharmonic. Its Hessian is (up to a constant) ω_B , the Bergman metric for $\mathbb{B}_n(1)$.

Example

Let
$$\varphi$$
 be defined on $\mathbb{B}_n(1) \times \mathbb{D}$ by $\varphi(z,t) = \frac{1}{2} \log(1-|z|^2) + |t|^2$. Then:

$$\mathsf{Hess}_\mathbb{C}(arphi) = -rac{1}{2}\omega_{\mathsf{B}}(\mathsf{z}) + \omega_{\mathsf{E}}(t)$$

is not positive-definite but still satisfies the hypotheses of our theorem.

Example: the unit ball in \mathbb{C}^n

The function given by $\eta(z) = -\log(1 - |z|^2)$ on the unit ball $\mathbb{B}_n(1) \subset \mathbb{C}^n$ is negative and plurisubharmonic. Its Hessian is (up to a constant) ω_B , the Bergman metric for $\mathbb{B}_n(1)$.

Example

Let
$$\varphi$$
 be defined on $\mathbb{B}_n(1) \times \mathbb{D}$ by $\varphi(z, t) = \frac{1}{2} \log(1 - |z|^2) + |t|^2$. Then:

$$\mathsf{Hess}_{\mathbb{C}}(arphi) = -rac{1}{2}\omega_{\mathsf{B}}(\mathsf{z}) + \omega_{\mathsf{E}}(t)$$

is not positive-definite but still satisfies the hypotheses of our theorem.

Example: the unit ball in \mathbb{C}^n

The function given by $\eta(z) = -\log(1 - |z|^2)$ on the unit ball $\mathbb{B}_n(1) \subset \mathbb{C}^n$ is negative and plurisubharmonic. Its Hessian is (up to a constant) ω_B , the Bergman metric for $\mathbb{B}_n(1)$.

Example

Let
$$\varphi$$
 be defined on $\mathbb{B}_n(1) \times \mathbb{D}$ by $\varphi(z,t) = \frac{1}{2} \log(1-|z|^2) + |t|^2$. Then:

$$\mathsf{Hess}_{\mathbb{C}}(\varphi) = -rac{1}{2}\omega_{\mathcal{B}}(\mathbf{z}) + \omega_{\mathcal{E}}(\mathbf{t})$$

is not positive-definite but still satisfies the hypotheses of our theorem.

Going further

- Have proved a theorem on the variation of Bergman kernels (important objects in the theory of several complex variables).
- The next goal is to prove an L² extension theorem under weakened positivity hypotheses.
 - Currently exploring the Berndtsson-Lempert technique.
 - Will definitely require a modification.

Going further

- Have proved a theorem on the variation of Bergman kernels (important objects in the theory of several complex variables).
- The next goal is to prove an L² extension theorem under weakened positivity hypotheses.
 - Currently exploring the Berndtsson-Lempert technique.
 - Will definitely require a modification.

Thank you for your attention.