Problem 4: Let \(\{f_n\} \) be a sequence of measurable functions defined on \(\mathbb{R} \). Show that the sets

\[
E_1 = \{ x \in \mathbb{R} \mid \lim_{n \to \infty} f_n(x) \text{ exists and is finite} \}
\]

\[
E_2 = \{ x \in \mathbb{R} \mid \lim_{n \to \infty} f_n(x) = \infty \}
\]

\[
E_3 = \{ x \in \mathbb{R} \mid \lim_{n \to \infty} f_n(x) = -\infty \}
\]

are measurable.

Solution. Theorem 3.5 of the textbook says that if \(\{f_n\} \) is a sequence of measurable functions, then the functions \(g = \liminf_{n \to \infty} f_n \) and \(h = \limsup_{n \to \infty} f_n \) are measurable.

Notice that \(\lim_{n \to \infty} f_n(x) = \infty \), if and only if \(\liminf_{n \to \infty} f_n(x) = \infty \). Hence,

\[
E_2 = \{ x \mid g(x) = \infty \} = \bigcap_{k \in \mathbb{N}} \{ x \mid g(x) > k \}
\]

is measurable. Likewise,

\[
E_3 = \{ x \mid h(x) = -\infty \} = \bigcap_{k \in \mathbb{N}} \{ x \mid h(x) < -k \}
\]

is measurable.

Further, notice that \(E_1 = \{ x \in |g(x) = h(x)\} \setminus (E_2 \cup E_3) \), hence \(E_1 \) is also measurable. \(\square \)

Problem 2: Let \(C \subset [0,1] \) be the Cantor middle-thirds set. Suppose that \(f : [0,1] \to \mathbb{R} \) is defined by \(f(x) = 0 \) for \(x \in C \) and \(f(x) = k \) for all \(x \) in each interval of length \(3^{-k} \) which has been removed from \([0,1] \) at the \(k^{th} \) step of the construction of the Cantor set. Show that \(f \) is measurable and calculate \(\int_{[0,1]} f \, dm \).

Solution. Denote by \(f_n : [0,1] \to \mathbb{R} \) the function constructed following way: If \(C_k \) denotes the union of the intervals of length \(3^{-k} \) removed in the \(k \)-th step of the construction of the Cantor middle-third set, let \(f_n(x) = k \) for \(x \in C_k \), and zero elsewhere. Then \(f_n \) is a simple function (it only takes \(n+1 \) values). Furthermore, it is easy to see that \(f_n \to f \) pointwise, hence \(f \) is a measurable function. In addition, the sequence \(f_n \) is increasing to \(f \), hence the Monotone Convergence Theorem gives us

\[
\int_{[0,1]} f \, dm = \lim_{n \to \infty} \int_{[0,1]} f_n \, dm = \lim_{n \to \infty} \left(\sum_{k=1}^{n} k 2^{k-1} 3^{-k} \right) = \frac{1}{3} \lim_{n \to \infty} \left[\sum_{k=1}^{n} k \left(\frac{2}{3} \right)^{k-1} \right]
\]

The answer up to this point is fine. With a little more effort, one can get the answer 3. This uses the following relation:

\[
\sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2} \quad \text{if} \quad 0 < |x| < 1
\]
There are a number of ways one can use to prove this fact, including Riemman sums and Taylor’s formula.

Problem 3: Let E be a measurable set. For a function $f : E \rightarrow \mathbb{R}$ we define the positive part $f^+ : E \rightarrow \mathbb{R}$, $f^+(x) = \max(f(x), 0)$, and the negative part $f^- : E \rightarrow \mathbb{R}$, $f^-(x) = \min(f(x), 0)$. Prove that f is measurable if and only if both f^+ and f^- are measurable.

Proof. One could directly apply the definition of a measurable function or use Theorem 3.5 for the maximum/minimum of two functions $f(x)$ and $g(x) = 0$.

Problem 4: Prove that if f is integrable on \mathbb{R} and $\int_E f(x) \, dm \geq 0$ for every measurable set E, then $f(x) \geq 0$ a.e. x.

Solution. Since f is integrable, it is in particular measurable. Let E be the measurable set $E = \{x| f(x) < 0\}$. By hypothesis, and using monotonicity of the integral

$$0 \leq \int_E f(x) \, dm \leq \int_E 0 \, dm = 0 \Rightarrow \int_E f(x) \, dm = 0$$

Notice that $-f$ is a positive function on E, and

$$\int_E (-f(x)) \, dm = 0.$$

Now Theorem 4.4 implies that $-f$ is zero almost everywhere. By the definition of E, this happens if and only if E has zero measure.

Problem 5: Let E be a measurable set. Suppose $f \geq 0$ and let $E_k = \{x \in E \mid 2^k < f(x) \leq 2^{k+1}\}$ for any integer k. If f is finite almost everywhere, then

$$\bigcup_{k=-\infty}^{\infty} E_k = \{x \in E \mid f(x) > 0\},$$

and the sets E_k are disjoint.

(a) Prove that f is integrable if and only if $\sum_{k=-\infty}^{\infty} 2^k m(E_k) < \infty$.

(b) Let $a > 0$ and consider the function

$$f(x) = \begin{cases} \frac{|x|^a}{a} & \text{if } |x| \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

Use part a) to show that f is integrable on \mathbb{R} if and only if $a < 1$.

Solution.

(a) Suppose f is integrable. Since $f(x) > 2^k$ on E_k, we have

$$\int_{E_k} f \, dm \geq \int_{E_k} 2^k \, dm = 2^k m(E_k)$$

(b) For $a < 1$, the function $f(x)$ is integrable because $|x|^a$ is integrable on $(-1, 1)$ and $f(x) = 0$ elsewhere. Conversely, if $f(x)$ is integrable, then $|x|^a$ is also integrable on $(-1, 1)$, and $f(x) = 0$ elsewhere, so $a < 1$.
Therefore, by the comparison test,

\[\sum_{k=-\infty}^{\infty} 2^k m(E_k) \leq \sum_{k=-\infty}^{\infty} \int_{E_k} f dm = \int_{\mathbb{R}} f dm < \infty \]

Next suppose \(\sum_{k=-\infty}^{\infty} 2^k m(E_k) < \infty \). Then \(2 \left(\sum_{k=-\infty}^{\infty} 2^k m(E_k) \right) = \sum_{k=-\infty}^{\infty} 2^{k+1} m(E_k) < \infty \).

Since \(f(x) \leq 2^{k+1} \) on \(E_k \), we have

\[\int_{E_k} f dm \leq \int_{E_k} 2^{k+1} dm = 2^{k+1} m(E_k). \]

Then

\[\int_{\mathbb{R}} f dm = \sum_{k=-\infty}^{\infty} \int_{E_k} f dm \leq \sum_{k=-\infty}^{\infty} 2^{k+1} m(E_k) < \infty, \]

and \(f \) is integrable.

(b) Following part a), we need to find the measure of the sets \(E_k \). If \(K \geq 0 \), then

\[2^k < |x|^{-a} \leq 2^{k+1}, \]

and

\[2^{-k} > |x|^a \geq 2^{-k-1} \]

\[2^{-k} > |x| > 2^{-k-1} \]

Then \(m(E_k) = 2 \cdot 2^{-k-1} (2^{\frac{1}{a}} - 1) \). If \(k < 0 \), then \(2^k < |x|^{-a} \leq 2^{k+1} \) implies \(|x| \geq 1 \), hence \(m(E_k) = 0 \), if \(k < 0 \). Thus,

\[\sum_{k=-\infty}^{\infty} 2^k m(E_k) = \sum_{k=-\infty}^{\infty} 2^{k+1} \cdot 2^{-k-1} (2^{\frac{1}{a}} - 1) \]

\[\sum_{k=-\infty}^{\infty} 2^k m(E_k) = (2^{\frac{1}{a}} - 1) \sum_{k=0}^{\infty} 2^{(k+1)(a-1)} \]

\[\sum_{k=-\infty}^{\infty} 2^k m(E_k) = (2^{\frac{1}{a}} - 1) \sum_{k=0}^{\infty} \left[2^{(a-1)(k+1)} \right] \\
\]

Notice that this geometric series converge if and only if \(2^{(a-1)} < 1 \), and this happens if and only if \(a < 1 \). \(\Box \)