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Introduction. 

Our purpose is to describe the liaison class of a general 

curve in ~3 of degree much larger than its genus. In particular, 

we prove a conjecture of Joe Harris ([HI, p.80) to the effect that 

such a curve can be linked only to curves of larger degree and 

genus. 

Recall that two curves X,Y C ~3 are directly linked if X 

is residual to Y in the complete intersection of two surfaces; 

they are linked if the ene can be obtained from the other by a 

succession of direct linkages. Classically, linkage was seen as 

a method for producing interesting examples of space curves start- 

ing from simpler ones. Later work on linkage-or liaison, as it is 

also called-has largely focused on the eouivalence relation it gener 

ates. Ap~ry [A] and Gaeta [G] proved that a curve X'C ~3 is linke~ 

to a complete intersection if and only if it is Drojectively Cohen- 

Macaulay; the analogous statement in higher dimensions was proved 

by Peskine and Szpiro [P-S]. The theorem of Ap4ry and Gaeta was 

generalized by the second author, who studied the deficiency module 

M(X) = ~ Hl(m 3 ,~x(n)) 
ne~ 

of X C ~3 , a finite module over the homogeneous coordinate ring 

S = k[T0,TI,T2,T3]. Specifically, it was shown in JR] that two 

curves X,Y C ~3 are linked if and only if the module M(X) of X 

coincides up to grading with either the module M(Y) of Y or its 
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dual M(Y) v . Moreover, any finite S-module M arises as the 

deficiency module of some curve in ~3 . Thus one has an essen- 

tially complete picture, from a cohomological point of view, of 

the various liaison equivalence classes that can occur for curves 

in ~3 . 

It is natural to ask, however, for a clearer geometric 

understanding of the curves that exist within a given liaison class. 

In the present paper, we consider the linkage class of a general 

smooth irreducible curve X C ~3 of sufficiently large degree. Our 

main result (§3) states that if Y is any curve linked to X, other 

than X itself, then deg(Y) > deg(X) and pa(Y) > Pa(X). Somewhat 

more precisely, we distinguish between even linkage-i.e., liaison 

involving an even number of direct linkages-and odd linkage, 

defined similarly. We show that if Y is evenly linked to X, then 

it is a deformation of the curve obtained by taking the union of 

X and certain complete intersection curves. If Y is oddly linked 

to X, then it arises in an analogous manner from the curve Z directly 

linked to X by irreducible surfaces of lowest possible degree. 

The questions we consider here were first raised by J. Harris 

(cf [H]). A priori, one could hope-as some of the classical 

geometers apparently did-that techniques of liaison could be used 

to study space curves inductively, by linking a given curve to a 

(possibly very special) curve of lower degree or genus. Believing 

that at least for general curves such an approach is fundamentally 

flawed, Harris suggested that a general curve should in various 

senses be minimal in its liaison class. Our results may be seen, 

then, as giving additional support (if any is needed) to the 
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philosophy that there is no easy way to get one's hands on a 

"general" curve. Some suggestive results in the direction of 

Harris~s conjectures were obtained for lines and rational curves 

by Migliore [M]; at least indirectly these have contributed 

substantially to the present paper, as has work of Schwartau 

[S]. 

Most of our results are stated for an arbitrary curve 

X C ~3 subject only to the condition that it not lie on any 

surfaces of degree e+4 or less, e being the largest integer such 

that hl(X,0X(e)) ~ 0. The generality assumption is used only in 

§3 to keep the curves in question off surfaces of low degree. It 

seems likely that similar results hold for curves X C ~3 general 

in the sense of Brill-Noether theory. What is missing is even a 

weak approximation to the maximal rank conjecture (cf [H], p.79). 

We are grateful to L. Ein, J. Harris, J. Migliore, 

P. Schwartau and M. Stillman for suggestions and encouragement. We 

also wish to thank C. Ciliberto for allowing this paper to appear 

in these proceedings even though we did not participate in the 

conference itself. 

§0. Notation and Conventions. 

(0.i). We work over an algebraically closed field k of arbitrary 

characteristic. A curve X C ~3 is a subscheme of pure dimension 

one, without embedded points. Thus X is (locally) Cohen-Macaulay. 

I x is the ideal sheaf of X, and I(X) its homogeneous ideal. 

(0.2). If F is a coherent sheaf on ~3 , we let 
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i H, (m 3 F) = ~) H i(~3 ~(n)) 
P t r 

n~ 

i 
so that H,(~ 3, F) is a graded module over the homogeneous 

coordinate ring S. We write simply 0 for the structure sheaf 

0 ~3" 

(0.3). Given a curve X C ~3 , we say that X lies on a surface F 

if F ~ I(X). If F,G ~ I(X) meet properly, then they link X to a 

curve Y whose scheme structure is determined as in [P-S]. If 

0 ~ P ~ N ~ 0 ~ 0 x ÷ 0 is a locally free resolution of 0 X, with 

1 H,(~3,P) = 0, then 0y has a resolution 

(0.4) 0 J NV(-f-g) , 0(-f) ~ 0(-g) ~ PV(-f-g) ~ 0 ~ 0y 

where f and g denote respectively the degrees of F and G 

([P-S], ProDn. 2.5). 

, 0 

§i. Curves minimal in their even liaison class. 

Given a curve X C ]p3 set r 

e(X) = max{nlH l(X,0x(n)) M 0}. 

Our goal in this section and the next is to show that if X does 

not lie on any surfaces of degree e(X) + 4 or less, then X is in 

various senses minimal in its even liaison class. For example, 

we will see that X has smaller degree and arithmetic genus than 

any other curve to which it is evenly linked (Corollary 1.5). The 

basic idea is that given any two evenly linked curves X,Y C ~3, 

there exist vector bundle maps 
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r r 

~9 0(-a i) u ~ E and ~9 0(-b i) v , E 
i=l i=l 

which drop rank respectively on X and Y. The crucial fact is that 

if X lies on no surfaces of degree ~ e(X) + 4, then b i ~ a i, and 

at least one inequality is strict if X ~ Y (Lemma 1.2). This 

allows us to compare the numerical invariants of X to those of Y, 

and to describe geometrically how Y is obtained from X. Under 

mild additional hypotheses, analogous statements can be made for 

odd linkage (Proposition 1.6). We remark that the importance of 

the integer e(X) in questions of liaison was known already to 

Gaeta. 

We start by recalling a useful representation of a given 

curve as a determinantal locus. 

Lemma i.i. 

sequence 

Let X C ~3 be a curve. Then there is an exact 

0 , p u , N ~ I X , 0, 

2 where N is a vector bundle, with H,(~ 3, N) = 0, and P is a direct 

sum of line bundles of degrees > -e(X) - 4. 

Proof. We use a construction similar to one used by Sernese [Se] 

(cf also [GLP] §2). Consider the graded S-algebra R= H~(~ 3, 0X). 

Since R = 0 for n<<0, R necessarily has a minimal generator in n 
degree zero, which we may take to be the identity. The sheafifi- 

cation of a minimal free S-resolution of R therefore takes the 

form 

0 ' P2 ~ P1 * P0 ~) 0 • * 0 x- ~ 0, 
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where each Pi is a direct sum of line bundles, and e : 0 ~ 0 X 

is the natural map. One then obtains, using the snake lemma, the 

following commutative diagram of exact sequences of sheaves: 

0 

I 
0 E ~ 0 

0 ~ PI- ~ P0 ~) 0 ~ 0 

IT 1 (~,o) 

T 0 ~ Pl 0 

0 

0 

I 
1 
P2 

i 
N 

1 
I x 

1 
0 

0 

0× 

i 
, 0 x 

1 
~ 0 

Here N is of course defined as the kernel of Pi; the vanishing of 

2 1 H~(~3 pl ) H.(~ 3 N) follows from the vanishings of H.(~ 3 P0 ) and I I ' " 

1 v By duality one has Ext~(R,S(-4)) = H,(~ 3, 0 x) , and hence all the 

summands of P2 have degrees h -e(X) - 4. Taking P = P2' the lemma 

follows. U 

Remark. Keeping the notation of the orevious proof, observe that 

M(X) = H~(~ 3, N). Hence the map induced by Pl on global sections 

gives a presentation of the deficiency module of X: 

0 0 H, (~3, pl ) , H, ~3, p0 ) , M(X) , 0 

Moreover, if X lies on no surface of degree e(X) + 3, so that 

H0(~ 3, N(t)) = H0(]P 3, P2(t)) for t < e(X) + 3, then this is 
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actually a minimal presentation of M(X). In practice, this yields 

a convenient method for computing a presentation of M(X)-or at 

least determining the number of generators and relations in each 

degree-in concrete examples. 

For instance, suppose that X is the disjoint union of d 

lines L i = {Ai=Bi=0}, where A i and B i are linear forms. Then 

H~(~ 3, 0 x) is resolved by taking the direct sum of the Koszul 

complexes formed from A i and B i. Hence M(X) can be described as 

the S-module given by generators el,...,e d in degree 0, subject 

to the relations 

d 
e. = 0 

i=l 1 

A.-e. = 0, B..e. = 0 (l<i<d). 
1 1 1 1 

Using the first relation to eliminate one of the generators, one 

obtains a minimal presentation having the form 

S(-l) 2d ~ S d-I , M~X) , 0. The disjoint union of d complete 

intersections is treated almost identically, Similarly, the defi- 

ciency module of a smooth rational curve X C ~3 of degree d > 4 

and not on a quadric surface has a minimal presentation of the 

form S(-2) 2d-3 , sd-3(-1) J M(X) , 0. We refer to Migliore 

[M] for a more geometric discussion of the linkage properties of 

lines and rational curves. 

Now suppose that Y C ~3 is evenly linked to X. Then we 

may repeatedly apply (0.4) to the exact sequence of (i.i) to obtain 

an exact sequence 

( * )  0 -, B , N ~ ) F  -, I y ( ~ 6 )  , 0 
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for some 6 e ~ , where B and F are direct sums of line bundles. 

On the other hand, if A = P~) F, then of course we have 

(**) 0 ) A uel ~ N~ F ~ I x ~ 0. 

Our main technical lemma allows us to compare the degrees of the 

summands of A and B provided that X lies on no surfaces of 

degree e(X) + 3 or less. Specifically, in the next section we 

shall prove 

Lemma i. 2. 

and 

In the notation just introduced, write 

r 
A = ~ 0(-ai), with a I < a 2 <_ ... <_ a r 

i=l 

r 

B = ~i 0(-b i), with b I _< b 2 _< .., _< br. 

If X lies on no surfaces of degree e(X) + 3, then 

b. > a. for all 1 < i < r. 
1 -- 1 -- -- 

If moreover X lies on no surfaces of degree e(X) + 4, and if 

Y ~ X, then b. > a. for at least one index i. 
1 l 

r 
Note that the integer 6 in (*) is just the sum [ (bi-ai). Observe 

i=l 
also that at least when F = 0 so that A = P, the len~na is highly 

plausible: for then the hypothesis on X implies that the free 

submodule H,0(]P 3, P) C H,0(~ 3, N) consists of the lowest degree 

generators of H0(~ 3, N). 

Before proceeding, we note the amusing 

Corollary 1.3. Let X C ~3 be a curve not lying on any surface of 
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degree e(X) + 4 or less. Then X is the only curve whose deficiency 

module is isomorphic to M(X) (with the given grading), and for 

n > 0,M(X) (n) cannot be realized as the deficiency module of any 

curve. In particular, X is determined by its module. 

Proof. If Y c ~3 is a curve whose module coincides with M(X) up 

to grading, then Y is evenly linked to X (by JR]), and we have 

M(Y) = H,l(m 3, N) (-6) = M(X) (-6), 

6 being the integer introduced above. But under the hypothesis on 

X, Lemma 1.2 asserts that 6 > 0 unless Y = X. 

Remarks. 

(i) By contrast, using a construction which we shall review 

below, Schwartau [S] has shown that given any curve X C ~3 , and 

any n < 0, there exist infinitely many curves Y C ~3 with 

M(Y) = M(X) (n). 

(2) We shall check in §3 that the hypothesis of the corollary is 

satisfied when X is a general curve of sufficiently large degree. 

In this form, the result had been conjectured by J. Harris 

([H], p.80). The last statement of the corollary was established 

by Migliore [M] when X is a union of lines. 

(3) At least in a special case, there is a simple geometric argu- 

ment showing that the hypothesis on X is necessary for the validity 

of the result. Specifically, suppose that X is reduced, and lies 

on a smooth surface S C ~3 of degree f + 4 < e(X) + 4. Then one 

has an exact sequence 

-X 
0 , 0 S ~ 0s(X) , ~x(-f.H) ~ 0, 
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where H denotes the hyperplane divisor class on S. Since 

e(X), duality shows that H0(X,~x(-f.H)) ~ 0. In view of the f 

vanishing of HI(S,0s) , it follows that X moves in a non-trivial 

linear system on S. But any two curves in such a linear system 

are evenly linked, and their deficiency modules are isomorphic 

(with the same grading). 

Our next object is to interpret geometrically the conclusion 

of Lemma 1.2. To this end, we need first to describe certain 

"basic double linkages." 

Given a curve X C ~3, let F be a surface of degree f 

containing X, and choose any surface H of degree h > 1 meeting F 

properly. If G is a general surface through X of sufficiently 

large degree, we may use F and G to link X to a curve X , and then 

use F and G-H to link X* to a curve Y. Y does not depend on the 

surface G, and we will say that it is obtained from X by a basic 

double linkage using F and H. This is a special case of the con- 

struction of liaison addition introduced by Schwartau [S]. Set 

theoretically, Y is the union of X and the complete intersection 

of F and H. Evidently deg(Y) = deg(X) + f-h, and it follows from 

([S], D.91) that Da(Y) - Pa(X) = hf.(h+f-4)/2 + h.deg(X). Observe 

that this difference is always non-negative, and is strictly positive 

unless X is a line, and h = f = I. 

The geometric meaning of Lemma 1.2 is summarized in 

Proposition 1.4. Let X C ~3 be a curve not contained in any 

surface of degree ~ e(X) + 3, and let Y C ~3 be any curve evenly 

linked to X. Then there exists a sequence of curves 

X = XI, X2, ... , Xm_], x m 
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such that Xi+ 1 is obtained from X i by a basic double linkage using 

suitable surfaces F i ~ I(X i) and Hi, and such that Y is a deformation 

of X m through curves having a fixed deficiency module. Moreover if 

X lies on no surface of degree e(X) + 4, and if Y ~ X, then at least 

one non-trivial basic double linkage must occur. 

The statement of the Proposition is illustrated in Figure i. Observe 

that, conversely, any curve Y obtained from X as indicated is evenly 

linked to X (by virtue of JR]). 

Proof. Under the hypothesis on X, the assertion of Lemma 1.2 is that 

X and Y arise via exact sequences 

r 
0 ~ ?i 0(-ai) u ~ E ~ IX 

i= 
-~ 0 

r 

~=I 0 (-b i) v -~ E-------+ Iy(6) , 0, 

2(m3,E) where E is a vector bundle of rank r+l, with H, = 0, and 

G # Basic double / 

y 
Figure 1 
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~l" = b i - a.z -> 0 for all 1 _< i _< r. 

We argue by descending induction on 6 = [6 i that this set-up 

implies the assertion of the Proposition. 

Suppose first that 6 = 0, so that a i = b i for 1 ~ i ~ r. 

Given t ~ k, let 

w t = tu + (l-t)v @ Hom(~0(-a i) ,E). 

Then for general t ~ k, the vector bundle map w t drops rank along 

a curve X t, and it is elementary that the curves X t fit together 

to form a flat family of subschemes of ~3, parametrized by a 

Zariski open set U C A 1 containing 0 and i. For t @ U one has 

1 i?3 M(X t) = H, ( , E) , 

and so Y is a deformation of X through curves with fixed deficiency 

module. 

Assuming then that 6 > 0, let u i and v i be the i th components 

of u and v respectively, and denote by s i the image of v i in 

Hom(0(-b i),I X ) : 

o (-b[) 

I N 

r u= (u I, . . . ,u r) ~v i ~ i  
0 , ~ 0(-a i) ~ E * I x + 0. 

i=l 

As before we suppose that the integers {a i} and {b.} are non-decreasina 

in i. 
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Let £ @ [l,r] be the largest integer such that 6£ > 0. 

Re-indexing the {b i} if necessary, we may assume that either £ = r 

or b£+ 1 > b~. We assert that for some index j ~ £, the section 

sj ~ H0(~ 3, 7x(b j ) is non-zero. In fact, one has a i = b i > b£ 

for i > £, and if s. = 0 for all j < £, then the first £ components 
3 

of v would factor through those of u: 

£ 
~) 0 (-a i) 
i=l 

s s 

(u I ..... u£) 

£ 
0 (-b i ) 

" i=l 

l (v I ..... v£) 
E 

But [ a. < [ b since ~, > 0, and so the mad ~, and hence also 
i=l z i=l i 

v, would drop rank along a surface, whereas in reality v drops 

rank exactly on the curve Y. Hence sj ~ 0 for some j ~ Z, as claimed. 

If Q is a general form of degree b£ - bj, then the section 

F = s£ + Qsj ~ H0(]P 3, Ix(b£)) 

is non-zero. Let X 2 be the curve obtained from X = X 1 by a basic 

double linkage using F and a general surface H of degree 6£. Then 

by (0.4), X 2 and Y (trivially) are realized via 

r 

0 .; ~ 0(-ai) ~ 0(-a£-~£) , E ~ 0(-a£) , IX2(6£)----~ 0 
i=l 

r 
) ) 0 i_~ 1 0(-ai-6 i) ~ 0(-a£) ', E ~ 0(-a£) Iy(6) , 0. 

These sequences satisfy the conditions stated at the beginning of 

the proof, hence the existence of the desired sequence of curves 
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follows by induction. Finally, the last assertion of the propositior 

follows from the fact that if X lies on no surfaces of degree 

e(X) + 4, and if X ~ Y, then at least one 6 i is non-zero. • 

Corollary 1.5. I_ff X lies on no surface of degree e(X) + 4 or 

less, and Y is evenly linked to X, then either X = Y or 

deg(Y) > deg(X) and pa(Y) > pa(X). • 

We now show that under a small additional hypothesis, a 

similar picture applies to odd linkage: 

Proposition 1.6. Let X C ~3 be a curve not lying on any surface 

of degree e(X) + 3 or less. Choose a system of minimal generators 

F i e I(X) (i <_ i <_ £) 

of the homogeneous ideal of X, with c i = deg(F i) non-decreasing in 

i. Assume that F 1 and F 2 meet properly, so that they link X to a 

curve Z. Then Z does not lie on any surface of degree e(Z) + 3 or 

less. 

Remark s. 

(i) If X is reduced and irreducible, it is automatic that F 1 and 

F 2 meet properly. 

(2) The curve Z may depend on the choice of the surfaces F 1 and 

F 2. However if Z' is obtained via F~ and F~, then Z' is a deforma- 

tion of Z through curves with fixed deficiency module (thanks to 

(1.4)). 

Proof. Consider a minimal free resolution of H~(~ 3, N), where N 

is the vector bundle constructed from X in Lemma i.i. 
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Such a resolution has length 2, and sheafifying 

yields an exact sequence which we use to define a bundle E as 

shown: 

(1.7) 

0 ) L 2 ) L 1 .~ L 0 , N , 0 

E 

o ~" ""~ o 

Thus each L i is a sum of line bundles, and in particular 

H~(~ 3, E) = 0. On the other hand, we have from (I.i) an exact 

sequence 

where 

0 ) P ~ N ; I x ) 0, 

s 
P = ~ 0 -d.), with all d. < e(X) + 4. 

i=l 3 3 - 

Observe that our hypothesis on X implies that 

(*) d. < c. (i < j < s, 1 < i < ~). 
3 - i . . . .  

It follows in particular from (*) that any minimal generator 

0 of H,(~ 3, P) must be a minimal generator~ of H~(~ 3, N). Therefore 
0 

£ 

L 0 = ~ 0(-c i) ~ P, 
i=l 

and then one sees that the bundle E defined above is isomorphic 

to the kernel of the natural map 0(-c i) ) ~X: 

(**) 0 , E ) ~ 0(-c i) ~ 7 X- * 0 
i=l (F 1 .... ,F£) 
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We next use (0.3) to read off from (**) a locally free 

resolution of I Z. Cancelling redundant terms, one finds: 

(***) 0 , ~0(ci-cl-c2) ~ EV(-cl-c2 ) , I Z , 0 
i=3 

2 1 (=H 2 , Since H,(~ 3, E v) = 0, it follows that H,(]P 3, 0 z) (]p3 Z )) injects 

into 

3 
(~ H, (]p3 0 (ci-cl-c 2) ) r 

i=3 

Recalling that the c i are non-decreasing, we deduce that 

e(Z) < c I + c 2 - (c3+4) <_ c I - 4. 

On the other hand H,I(]P 3, N v) = 0, so it follows from (1.7) that 

,0 E v H,0(ID 3 V(-Cl-C2)) surjects onto H,(l m3 (-ci-c2)) and hence, , L 0 , , 

0 thanks to (***), onto H,(]P 3, IZ). Therefore, aenerators of the 

0 homogeneous ideal I(Z) = H, (~3, IZ ) can occur only in degrees 

c I , c 2 , and c I + c 2 - dj (i ! J ~ s). 

But c I + c 2 - dj ! c 2 2 c I by (*), so H~(~ 3, I z) vanishes in 

degrees c I - 1 and less. Since e(Z) + 3 ! c I - i, this proves 

the Proposition. 

Corollary 1.8. Let X and Z be as in the statement of Proposition 

1.6, and let Y be any curve oddly linked to X. Then Y is obtained 

from Z by a succession of basic double linkages, and then a deforma- 

tion, as described in (1.4). In particular, deg(Y) > dea(Z), and 

Pa (Y) ~ Pa (Z)- 
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~2. Proof of Lemma 1.2. 

We keep the notation introduced in §i, so that we have 

exact sequences 

0 ' P U + N ' IX- : 0 

and 

0 * B v > N ~)F ~ Iy(6) > 0. 

Here B,F and P are direct sums of line bundles, every summand of 

P having degree > - f, where f = e(X) + 4. We assume that X lies 

on no surface of degree e(X) + 3 or less, i.e., that 

(2.1) H0(]P 3, P(t)) = , H0(]P 3, N(t)) for t < f - i. 

Note that this implies that N cannot itself split as a sum of line 

bundles (at least if X ~ ~). We wish to compare the degrees of 

the summands of A = P~ F to those of B. 

To begin with, we rephrase the desired statement (1.2). 

If H is any bundle on ~3 splitting as a direct sum of line bundles, 

and £ is any integer, set 

H > £ = ~ (summands of H of degree ~ £), 

and define H < £ similarly, so that H = H < £~ H > £, A moment's 

thought shows that the first statement of Lemma i. 2 is equivalent to 

More formally, for any £ e 7/. there is a natural map 

H0(• 3, H(-£)) ~k0(Z) , H. 

H > £ is its image, and H < £ = H/H > £. 
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(2.2) For ever[ £ e ~, 

rk(P > £ ~F > £) _> rk(B > £). 

Proof of (2.2). We proceed in two cases: (i) £ < - f; and 

(ii) £ > - f. 

Case (i): £ < - f. 

We have B = B > £ ~ B < £ and F = F > £ ~ F < £, and the 

given map v ~ Hom(B,N ~F) is an injection of sheaves. Since 

Hom(B>~,F<~) = 0, we get an injection B > £~--~ N ~F > £. Hence 

(*) rk(B>£) < rk(N) + rk(F>£) 

Now suppose that equality holds in (*). Then B > £ and N ~F > 

are vector bundles of the same rank, and since N is not a sum of 

line bundles, the map B > £--~ N~ _ m > £ (thought of as a homo- 

morphism of vector bundles) must drop rank along a surface. Hence 

so too must the given homomorphism v. But v in fact drops rank 

only along the curve Y, and therefore strict inequality must hold 

in (*) i.e r -, 

(**) rk(B>£) <_ rk(N) - 1 + rk(F>£). 

Finally, since £ ~ - f, one has P > £ = P. But rk(P) = rk(N) - i, so 

(2.2) follows from (**) in the case at hand. 

Case (ii): £ > - f. 

Let N < £ denote the cokernel of the composition of the 

natural inclusion P > £~ ~ P with the given map u:P ~ N: 

0 ~ P , N ~ N , 0 > £ < £ 

In view of (2.1) and the hypothesis £ > - f, one has 



285 

H 0(~3, P>z(t)) , H0(]P 3, P(t)) e~ , H0(]p3, N(t)) 

when t < - £ (< f-l). Hence 

(*) H0(~ 3, N<£(t)) = 0 for any t _< - £. 

Consider now the diagram 

0 

B>£ ~ B<£ 
- ~v 

0 ' P>£~) F>£ ' N ~F ~ N<£ ~ F<£ ~ 0, 

where horizontally we've just formed the sum of two exact seauences. 

Evidently Hom(B>~,F<£) = 0, and it follows from (*) that similarly 

Hom(B>%,N<£) = 0. 

Hence v induces an injection of sheaves B>£e---~ P>£~ F>£, and 

taking ranks gives (2.2) when £ > - f. W 

To complete the proof of Lemma 1.2, it remains to show 

that if X lies on no surfaces of degrees f = e(X) + 4 or less, and 

if B = P~ F, so that one has an exact sequence 

0 , P~ F v , N~ F , Iy ~ 0, 

then Y = X. To this end, observe that v gives rise via the 

decomposition F = F>_f ~F<_f to a homomorphism 

u:F<_f , F<_f , 

and since Hom(P~ F>_f,F<_f) = 0 for reasons of degree, coker ~ is 
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a quotient of coker v = Iy. Since in any event coker e is 

locally free, this implies that n is an isomorphism. Hence 

splits off from v, i.e., Iy arises as the cokernel of an injective 

sheaf homomorphism w:P~ F>_f ~ N ~F>_f. But then consider the 

diagram 

(*) 
I P ~) F>_f 

~" W 

0 , P ~ F>_f u Q 1 , N ~ F>_f , I X , 0. 

Since H0(]P 3, 7x(t)) = 0 for t <_ f, (*) shows that w factors through 

an isomorphism as indicated, whence X = Y. 

The proof of Lemma 1.2 is now complete. 

§3. The liaison class of a general curve of large degree. 

We now apply the results of ~I to a smooth irreducible curve 

X C ~3 of genus g and degree d>>g. To begin with, we assume that 

d > 2g - i, so that e(X) < 0. Moreover, when d > 2g - 1 the 

family of all such curves is irreducible, so it makes sense to 

speak of the properties enjoyed by a general smooth curve of genus 

g and degree d. 

All that is needed at this point is to bound from below the 

degrees of the surfaces on which X lies. For our purposes, the 

following elementary estimate is sufficient: 

Lemma 3.1. Fix an integer g > 0. Then there exists a constant 

C(g) > 2g-i such that a sufficiently general curve of genus g and 
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degree d > C(g) lies on no surfaces of degree 5/~ or less. 

Proof. Recall first of all that Hirschowitz [Hi] has shown that 

a general rational curve D C ~3 of degree f lies on a surface of 

degree n if and only if 

i.e., 

1 > + 

n > _ 3 + /~--J-~. 

Now let C C ~3 be any smooth curve of genus g and degree 

d O ~ 2g-l. Choose a smooth rational curve D C ~3 of degree f 

for which Hirschowitz's theorem holds. Translate D by an automorphis~ 

of ~3 so that it meets C at a single point with distinct tangents, 

and let 

XO = C UD. 

Thus X 0 has degree d = d 0 + f and arithmetic genus g, and by con- 

struction X 0 lies on no surfaces of degree ~ /6(d-d 0) - 2 - 3. But 

X 0 moves in an irreducible flat family of curves in ~3 whose general 

member is smooth (cf [T]). Therefore a generic smooth curve of 

degree d and genus g lies on no surfaces of degree 

/6(d-d0) 2 - 3, and letting f ~ ~ the lemma follows. U 

Thus all the results of §i apply in the case at hand, and 

in summary we have established 

Theorem 3.2. Let X C ~3 be a general smooth irreducible curve of 

~enus g and degree d>>g, and let Z be the curve directly linked to 

X by two irreducible surfaces of lowest degree through X°  (Thus 
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for d>C(g), Z has de~ree > 4d and arithmetic genus > g + 3d(/~-2).) 

Then: 

(a) X is the only curve with deficiency module M(X) (with the 

given grading), and for n > 0 there is no curve with module 

M(X)(n). 

(b) If Y C ~3 is evenly linked to X, then Y is a deformation, 

through curves with fixed deficiency module, of a~curve obtained 

from X by a sequence of basic double linkages. In particular, if 

Y ~ X, then 

deg(Y) > deg(X) and pa(Y) > Pa(X). 

(c) If Y C ~3 is oddly linked to X, then Y is a deformation of a 

curve obtained from Z by a seauence of basic double linkages, and 

in particular 

and 

Remark. 

deg(Y) > de 9(Z) > deg(X) 

Pa(~) >_ Pa(Z) > Pa(X), 

In case (a) one has the estimates 

deg(Y) > d + 5~ 

pa(Y) > g + (7d - 3/~)/2. 

One can replace /~ in the lemma by ~ (£>0), and this leads 

to somewhat sharper bounds on the degree and genus of Y. 
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