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Introduction 

Let X be a non-singular connected complex projective variety of dimension n. In 
1970, Barth [B1] discovered that if X admits an embedding X " ~ I P  "+~ of 
codimension e, then the restriction mappings H~(IP"+~,~)--+Ht(X, (E) are isomor- 
phisms for i < n - e .  Our main result is an analogue of Barth's theorem for 
branched coverings of projective space: 

Theorem 1. Let f :X" ~ IW be a finite mapping of degree d. Then the induced maps 
f*  : H~(1W, ~ ) ~  Hi(X, ~) are isomorphisms for i < n + 1 - d. 

Observe that the conclusion is vacuous for d > n + 1. On the other hand, as the 
degree d becomes small compared to n, one obtains progressively stronger 
topological obstructions to expressing a variety as a d-sheeted covering of IP". 

The proof of the theorem relies on a basic construction which clarifies 
somewhat the connection between subvarieties and branched coverings. 
Canonically associated to a finite morphism f : X " ~ F "  of degree d, there exists a 
vector bundle E~IW of rank d -  1 having the property that f factors through an 
embedding of X in the total space of E (Sect. 1). An important fact about coverings 
of projective space is that these bundles are always ample. This leads one to 
consider quite generally a smooth n-dimensional projective variety Y, an ample 
vector bundle E ~ Y  of rank e, and a non-singular projective variety X of 
dimension n embedded in the total space of E : 

X ~ , E  

Y .  

Inspired by Hartshorne's proof [H 2, H 3] of the Barth theorem, we show in Sect. 2 
that under these circumstances one has isomorphisms Hi(Y,C)--~Hi(X, IE) for 
i < n -  e. This yields Theorem I. And in fact, by taking E to be the direct sum of e 
copies of the hyperplane line bundle on IW, one also recovers Barth's theorem for 
embeddings X" ~IP" + ~. 
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In Sect. 3 we give two applications to low degree branched coverings of 
projective space by non-singular varieties. First we prove 

Proposition 3.1. I f  f :X"~IP" has degree < n - 1 ,  then f gives rise to an isomor- 
phism Pie (I~) ~ Pic (X), 

Proposition 3.1 allows us to analyze the rank two vector bundle associated to a 
triple covering, and we deduce 

Proposition 3.2. I f  f :X"-~IW has degree three, and if n > 4, then f jactors through 
an embeddin9 of X in a line bundle over ~". 

This generalizes the familiar fact that a non-singular subvariety of projective 
space having degree three and dimension at least four is necessarily a hypersurface. 

It was shown in [G-L],  where Theorem 1 was announced, that iff:X"-,1W is a 
covering of degree <__ n, then X is algebraically simply connected. Deligne [D] and 
Fulton [F] subsequently proved that in fact the topological fundamental group of 
X is trivial. This result, plus the analogy with Larsen's extension of the Barth 
theorem [L, B2], lead one to conjecture that in the situation of Theorem 1 the 
homomorphisms f ,  : Tc~(X)-~ ~i(1P") are bijective for i < n + 1 - d. Deligne [D] has 
recently stated a conjecture which - at least in certain cases - would imply this 
homotopy version of Theorem 1. 

Excellent accounts of Barth's theorem and related work may be found in 
Hartshorne's survey articles [H2] and [H3]. Sommese IS] emphasizes the role 
played by ampleness in Barth-type results. Along different lines, Berstein and 
Edmonds [B-E] have obtained an inequality relating the degree of a branched 
covering f : X ~ Y  of topological manifolds to the lengths of the cohomology 
algebras of X and Y. They sketch some applications to branched coverings of IP" by 
algebraic varieties in Sect. 4 of their paper. 

0. Notation and Conventions 

0.t. Except when otherwise indicated, we deal with non-singular irreducible 
complex algebraic varieties. By a branched covering, we mean a finite surjective 
morphism. 

0.2. H*(X) denotes the cohomology of X with complex coefficients. 

0.3. If E is a vector bundle on X, ~(E) denotes the bundle whose fibre over x e X  is 
the projective space of one-dimensional subspaces of E(x). We follow Hartshorne's 
definition [H 1] of an ample vector bundle. 

1. The Vector Bundle Associated to a Branched Covering 

Consider a branched covering f :X ~ Y of degree d. As we are assuming that X and 
Y are non-singular, f is flat, and consequently the direct image f ,O x is locally free 
of rank d on g The trace Trx/y:f,(gx~(9 r gives rise to a splitting 

f ,  Gx=•y@F , 
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where F = ker (Trxl 0. We shall be concerned with the rank d -  1 vector bundle 

E = U  

on Y. We refer to E as the vector bundle associated to the covering f. Recall that as 
a variety, E can be identified with Spec (Symr(F)). 

Lemma 1.1. The covering f :  X--* Y factors canonically as the composition 

X ~ E ~ Y ,  

where E ~  Y is the bundle projection, and X , , E  is a closed embedding. 

Proof. The natural inclusion F ~ f , ( 9  x of Cr-modules determines a surjection 
Symr(F)~  ],  (9 x of (Or-algebras. Taking spectra, we obtain a canonically defined 
embeddingX ~ E  over E QED 

When f : X ~  Y is a double covering, for example, the lemma yields the familiar 
representation of X as subvariety of a line bundle over Y. 

A basic property of coverings of projective space is that the vector bundles 
obtained by this construction are ample: 

Proposition 1.2. Let E be the vector bundle on g'" associated to a branched covering 
f :X"--+IP n. Then E ( -  1) is generated by its global sections. In particular, E is ample. 

Proof. It suffices to show that E ( -  1) is O-regular, i.e. that 

HI(IP ' ,E( - i -1 ) )=O for i > 0  

(cf. [M 1, Lecture 14]). It is equivalent by Serre duality to verify 

(*) H"-~(IW, F( i -n ) )=O for i > 0 ,  

where as above F = EL When i=  n, (,) is clear, since 

H°(X, Cx) = Hoop ", f ,  Cx) = Hoop" , (9 ~,) (9 H ° (IP", F) , 

and H°(X, (gx) = Hoo P", (9~-) = IF. In the remaining cases 0 < i < n, we note similarly 
that 

H "  - '(~'", F(i - n ) )  = H "  - '( ~", f ,  ( g x ( i  - n ) )  

= n " -  i (X,  f *  (gr=(i - n ) ) .  

But for 0 < i < n ,  f*(gF=(i-n) is the dual of an ample line bundle on X, whence 
H"-i(X,f*6)~,,(i-n)) = 0  by the Kodaira vanishing theorem. QED. 

We remark that the ampleness of the vector bundle associated to a branched 
covering f : X ~ Y  has a striking geometric consequence, concerning the ramifi- 
cation of f. Specifically, consider the local degree 

el(x ) = dime ((9=X/f *mf(x)) 
of f at x eX,  which counts the number of sheets of the covering that come together 
at x (cf. [M2, Appendix to Chap. 6]). 
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Proposition 1.3. I f  the vector bundle associated to a branched covering f :X"-+ Y" of  
projective varieties is ample, then there exists at least one point x s X  at which 

e~(x) > rain (degf, n + 1). 

So for instance if deg f  > n + 1, then n + 1 or more branches of the covering must 
come together at some point of X. For  coverings of IP", the existence of such higher 
ramification points was proved with Gaffney [G-L]  as a consequence of the 
Fulton-Hansen connectedness theorem [F-HI .  (The definition of ez(x) adopted in 
the more general setting of [G-L]  reduces to the one stated above thanks to the 
fact that we are dealing with non-singular complex varieties.) 

Sketch of  Proof of  (t .3). The argument given in [G-L,  Sect. 2] goes over with only 
minor changes once we know the following: 

If S is a possibly singular integral projective variety of dimension > 1, and if 
g : S ~  Y is a finite morphism, then Z = X  x r S is connected. 
We will show that in fact h°(Z,(gz)=l,  To this end, let f ' : Z ~ S  denote the 

projection. Then 

f .  (9 z = g*f.  C x = g*(~rOg*F , 

where F is the dual of the vector bundle associated to f Since g is finite and F'is  
ample, g*F is the dual of an ample vector bundle on the positive-dimensional 
integral projective variety S. Therefore h°(S,g*F)=O, and 

h°(Z, (gz) = h°(S,f ,  (gz) = h°(S, (gs) = 1. QED 

2. A Barth-Type Theorem 

Our object in this section is to prove the following theorem. Recall that we are 
dealing with irreducible nonsingular varieties. 

Theorem 2.1. Let Ybe a projective variety of dimension n, and let E-* Ybe an ample 
vector bundle of  rank e on Y Suppose that X c= E is an n-dimensional projective variety 
embedded in E. Denote by f the composition X ~ E ~  Y Then the induced maps 

f *  : Hi( y )+  Hi(X) 

are isomorphisms for i < n -  e. 
Note that f, being affine and proper, is finite. 
In view of (1.1) and (t.2), Theorem 1 stated in the introduction follows 

immediately. More generally, we see that if Y" is projective, and i f f :X" -~Y"  is a 
branched covering of degree d such that the vector bundle associated to f is ample, 
then the homomorphisms f*:HJ(Y)-~Hi(X) are bijective for i < n + l - d .  For 
example, if f :X"+ Y" is a double cover branched along an ample divisor on Y, then 
Hi(Y) --~-~Hi(X) for i ~ n -  1. 

Remark 2.2. Theorem I is sharp "on the boundary of its applicability", i.e. there 
exists for every n >_ 1 a covering f:X"--* IP" of degree n + 1 with H I(X)4: 0, Assuming 
n__> 2, for example, start with an elliptic curve C__C. lP" of degree n+  1, with C not 
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contained in any hyperplane, and consider the incidence correspondence 

x = {(p, H)IpE 1-I} c= C x re"*. 

X is a IP"-1-bundle over C, whence HI(X)+-O, and the second projection gives a 
covering f:X"~IP"* of degree n + 1. (The reader may find it amusing to check that 
the vector bundle associated to this covering is isomorphic to the tangent bundle 
of 1P".) Similarly, if C=IP" is a rational normal curve of degree n, we obtain an 
n-sheeted covering f :X~IP"* with dimH2(X)=2. On the other hand, 
Proposition 3.2 and Theorem 2.1 show that as one would expect, Theorem 1 is not 
sharp for all d and n. 

Remark 2.3. It follows from Theorem t that i f f :X"~ lW is a branched covering of 
degree d, and if S, Tc=X are (possibly singular) subvarieties such that codimS 
+codim T<n+ t -d ,  then S meets T. (The first non-trivial case is when d = n -  1, 
the assertion then being that any two divisors on X must meet.) This result remains 
true even ifX is singular. For by [G-L,  Theorem 1], there exists a subvariety R =cX 
of codimension _< d -  1 such that f is one-to-one over f(R). And f(R)c~f(S)raf(T) is 
non-empty for dimensional reasons. 

Remark 2.4. Theorem 2.1 implies the Barth theorem for embeddings X" ~+IP "+e. In 
fact, choose a linear space L ___ 1W + ~ of dimension e -  1, with L disjoint from X, and 
consider the projection (IP "+~- L)-~IW centered along L. The variety ~ " + ~ - L  is 
isomorphic over IW to the total space of d)~,(l)~ ... @(9~,,(1) (e summands), and we 
conclude from (2.1) that Hi(Ip")-~H~(X) for i<n-e .  But this is equivalent to 
Barth's assertion. 

The remainder of Sect. 2 is devoted to the proof of (2.1). The argument is 
inspired by Hartshorne's simple proof of the Barth theorem [H2, p. 1020; H3, 
p. 147] and by Sommese's demonstration of a related result [S, Proposition 2.6]. 

We assume henceforth that eNn. Let n:ff,=IP(E@I)~Y be the projective 
completion of E. One has the commutative diagram 

x ~ / ~  
:'~ ~/~ 

Y, 

where j denotes the composition of the given embedding X b E  with the natural 
inclusion Ec__/2. Let ~=c1((9~l))eH2(E), and let rlxsHa~(ff.) be the cohomotogy 
class defined by X. The class ~ represents the divisor at infinity in /~ [i.e. 
1P(E)____ IP(E(~I)], and X does not meet this divisor. Hence 

(2.5) j*(~) = 0 .  

We claim next that j*(qx)eHz~(X) is given by 

(2.6) j*(~Ix)=(degf)c~(f*E). 
Indeed, in view of (2.51 it suffices to verify the formula 

(*) qx=(degf)  ~ q(n*E)~ ~-i. 
i=0 
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To this end, note that the fundamental class [X] of X is homologous in E to 
(degf) [Y], where YCE is the zero section. Hence ttx =(degf)r/r, ~rEH2e(F) being 
the cohomology class defined by g Now if Q=g*(E01)/(9~(-1) denotes the 
universal quotient bundle on/~, then one has r/r = G(Q), and (,) follows. 

The key to the argument is having some control over the effect on H*(X) of 
multiplication by j*(tlx). The requisite fact is provided by Sommese's formulation 
of a result of Bloch and Geiseker [B-G] on the top Chern class of an ample vector 
bundle: 

(2.7) Let F be an ample vector bundle of rank e < n on a (non-singular, irreducible) 
projective variety X of dimension n. Then multiplication by G(F) gives 
surjections 

H.-e+~(X)_~ H.+~+~(X) 
for I>=0. 

See [S, Proposition 1.17] for the proof, which ultimately depends on the Hard 
Lefschetz theorem. 

These preliminaries out of the way, we conclude the proof of Theorem 2.1. 
Note that it suffices to prove 

f*  :H"+~+t(Y)-,H"+¢+~(X) is 
(*t surjective for 1 => O. 

Indeed, H*(Y) injects into H*(X) for any generically finite morphism X"--, Y", and 
so (2.1) is equivalent to (*) by Poincar6 duality. 

Consider the commutative diagram 

H"-¢+liX~ ;* , H"+~+I(E)- , ~* H"+~+~(Y) 

H,+e+z(X) 

where j ,  is the Gysin map defined by Poincar6 duality from 
H, + e - l( X)-* H,  + e-l(/~)" Since f is finite, f*E is an ample vector bundle on X, and it 
follows from (2.6) and (2.7) that H"-  ~ + l(X)-, H" + ~ + t(X) is surjective. Hence so also 
is j*. But H*(E) is generated over H*(Y) by ~ H2(/~), and j* kills 4. The surjectivity 
of j* therefore implies the surjectivity o f f* .  This completes the proof. 

Remark 2.8. We mention some additional results concerning the geometry of an 
ample vector bundle E--,IP" of rank e. First, if X__C E is a (non-singular) projective 
variety of dimension a, then the maps H~(IW)-,HJ(X) are isomorphisms for i<  2a 

- n -  e. The proof is similar to that just given, except that formula (2.6) is replaced 
by the observation that the normal bundle of X in E is ample. Along somewhat 
different lines, the connectedness theorem of Fulton and Hansen I F - H i  can be 
used to prove an analogous result for ample bundles on IP", from which one 
deduces the following: 

I f  S and Tare irreducible but possibly singular projective subvarieties of E, then 
(i) Sc~ T is connected and non-empty if dim S + dim T>= n + e + 1; 



Barth-Type Theorem for Branched Coverings 159 

(ii) S is atoebraically simply connected if 

2dimS>=n+e+ l .  

In particular, if f :X"~IP" is a branched covering of degree d, with X non- 
singular, then assertions (i) and (ii) apply with e = d - 1  to subvarieties S, Tc=X. 
Details appear in [Lz]. 

Remark 2.9. It is natural to ask whether in the situation of Theorem 2.1 the relative 
homotopy groups rci(E,X ) vanish for i<  n - e  + 1. At least when Y= IP", it seems 
reasonable to conjecture that this is so. Assertion (ii) of the previous remark, 
applied with S=X,  points in this direction. Larsen's theorem ILl provides 
additional evidence. 

3. Applications to Coverings of ~" of Low Degree 

We give two applications ol the results and techniques of the previous sections to 
branched coverings f:X"-~IW of low degree. We continue to assume that X is 
irreducible and non-singular. The first result deals with Picard groups: 

Proposition3.1. I f  f :X"-~IP" has degree < n - l ,  then f*:Pic(IP")~Pic(X) is an 
isomorphism. 

Proof. A well-known argument (cf. [H3, p. 150]) shows that the proposition is 
equivalent to the assertion that f*'H2(IW,7Z)-~H2(X,7Z) is an isomorphism. 
[Briefly: one look-s at the exponential sequences on IP" and on X, noting that 
Theorem l, and the Hodge decomposition yield HI(X,~x)=H2(X,(gx)=O.] 
Theorem 1 implies that H2(X, 7Z ) has rank one. On the other hand, X is 
algebraically simply connected ([G-L,  Theorem2]),  whence HI(X, 7])=0. It 
follows from the universal coefficient theorem that H2(X, ~)= 77. Finally, as f has 
degree _<_ n -  1 < 2", f *  must map the generator of H2(Ip ",:g) to the generator of 
H2(X, 7Z). QED 

As a second application, we derive a fairly explicit description of all degree 
three coverings f:X~--+IW with n>4.  Specifically, we will prove 

Proposition 3.2. Let f :Xn--+lW be a triple covering. Denote by b the degree of the 
branch divisor off.  

(i) I f  co x = f*Cen(k) for some ke Z, then f factors through an embedding of X in a 
line bundle L--+IW, and conversely. In this case, 

6 deg (L) = b. 

(ii) The condition in (i) always holds if n > 4. 

By the branch divisor of a covering f:X"-+IP" we mean the push-forward to IW 
of the ramification divisor of f. 

Statement (ii) is a consequence of Proposition 3.t, so only (i) needs proof. The 
method is to focus on the rank two vector bundle E on IP" associated to f (Sect. 1). 
Lemmas 3.3 and 3.4 show that if co x = f*(9~,(k), then E at least has the form that it 
should i fX is to embed in a line bundle. Finally we show that this implies that f 
actually admits the indicated factorization. 
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I.emma 3,3. Let L ~ ]P ~ be an ample line bundle, and let Z C= L be a possibly singular 
projective variety of dimension n embedded in L, Denoting by d the degree of the 
natural map g:Z~lP", one has 

g , (gz=C~,OL-10  ... ®L 1 -a 

Proof Let ~t:E, = ~(L® 1)~ 1W be the projective completion of L. Considering Z as 
a divisor on L and noting that Z does not meet the divisor at infinity 
F(L) ~ ~'(LO 1), we see that C~z(- Z) = (9~;(- d)®n*L-d. Using [H4, 
Exercise III,8.4] to calculate R~r,(9~-d) ,  the assertion follows from the exact 
sequence 0 ~ O ~ ( - Z ) ~ C L ~ ( g z ~ O  upon taking direct images. QED 

Lemma 3.4. Under the assumption of (i) of Proposition 3.2, the vector bundle E 
associated to f has the form E = L O L  2, where 6deg(L)=b.  Equivalently, f,6~x 
= (9~,.@L'71 @L 2 

Proof By duality for f, one has f,o~ x =oe .®( f , ¢x ) .  while the hypothesis on c~ x 
yields f ,  COx=(f,(gx)(k ). Writing l = k + n + ] ,  we conclude the existence of an 
isomorphism 

(*) ( -9 , , ( - l )~E(-I)=Ce,  GE< 

Now the ramification divisor of f represents the first Chern class of f*(9~,(l), and 
one deduces the relation b = 31. Note that in particular, l is positive. With this in 
mind, it is a simple exercise to show using (,) that E=(ge,(t/2)@(oe,(l ). QED 

Proof of 3.2. I f f  factors as stated, then X is a divisor on L, and hence mx= f*(ge,(k) 
for some keZ. Conversely, suppose that mx is of this form. By (1.1) and (3.4) there 
is then an embedding X ~ L @ L  2 over F". Let ZC__L denote the image of X under 
the natural projection n :L@L2-~L, and consider the resulting factorization o f f :  

X ~-~L@L 2 

Z ~---~L f=gop .  
g\ J 

IP" 

We will show that p is an isomorphism. 
To this end, note first that p is birational. For  if on the contrary degp=  3, then 

g would be an isomorphism and f would factor through an embedding of X in 
n-  I(Z), i.e. in the line bundle L2--* Z = IP". But then using (3.3) to compute f ,C  x, we 
would arrive at a contradiction to (3.4). Hence g has degree 3, and upon comparing 
the calculations of (3.3) and (3.4), one finds that 

(*) g,C;z-~ j ,  Or. 
But this implies that p is an isomorphism. In fact, let ~ be the cokernel of the 
natural inclusion O z ~p,(9 x. It follows from (,) that H°(Z, ~®g*(9~,,(d))=0 for 
d>>0, and hence ~ = 0 .  QED 



Barth-Type Theorem for Branched Coverings 161 

Remark 3.5. As a special case of Proposi t ion 3.2 [with L = (9~,(1)] one recovers the 
well known fact that the only non-s ingular  subvarieties of projective space having 
degree three and  dimension at least four are hypersurfaces. For  coverings 
f:X"--,IW of larger degree, however, the analogy with subvarieties does not  hold as 
directly. For  instance, a non-s ingular  projective subvariety of degree five and 
dimension __> 7 is a hypersurface. On  the other hand, one may construct  in the 
following manne r  five-sheeted coverings f:X"--* 1P", with n arbitrari ly large, that do 
not  factor through line bundles. Let L- -  (ge,(1), and  consider the vector bundle  ~: E 
= L 2 ( ~ L 3 ~  ". Then there are canonical  sections Se['(E, rc*L2), T~I'(E, zc*L 3) 
which serve as global coordinates on E. Choose forms AeF(IP", Ls), Be F(1P", L6), 
and consider the subscheme X C=E defined by the common  vanishing of the 
sections 

ST + zc*Ae F(E, zc* L s) 

S 3 + T 2 + g*BeF(E, re*L6). 

One  checks that the na tura l  map f : X " ~ I W  is finite of degree five. X is connected 
(at least when n > 2), and for generic choices of A and  B, X is non-singular .  Finally, 
the scheme-theoretic fibre of X over a point  in V(A, B) c= ~," has a two-dimensional  
Zariski tangent  space, which shows that f cannot  factor through an embedding of 
X in a line bundle  over lP n. [Alternately, this follows by (3.3) from a computa t ion  of 
f,(9 x : 

f .  (9 x = (9~,OL- 2@L- 3@L- 4®L-  6.] 
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