A Barth-Type Theorem for Branched Coverings of Projective Space

Robert Lazarsfeld

Department of Mathematics, Brown University, Providence, RI 02912, USA

Introduction

Let X be a non-singular connected complex projective variety of dimension n. In 1970, Barth [B1] discovered that if X admits an embedding $X^n \to \mathbb{P}^{n+e}$ of codimension e, then the restriction mappings $H^i(\mathbb{P}^{n+e}, \mathbb{C}) \to H^i(X, \mathbb{C})$ are isomorphisms for $i \leq n-e$. Our main result is an analogue of Barth's theorem for branched coverings of projective space:

Theorem 1. Let $f: X^n \to \mathbb{P}^n$ be a finite mapping of degree d. Then the induced maps $f^*: H^i(\mathbb{P}^n, \mathbb{C}) \to H^i(X, \mathbb{C})$ are isomorphisms for $i \leq n+1-d$.

Observe that the conclusion is vacuous for d > n+1. On the other hand, as the degree d becomes small compared to n, one obtains progressively stronger topological obstructions to expressing a variety as a d-sheeted covering of \mathbb{P}^n .

The proof of the theorem relies on a basic construction which clarifies somewhat the connection between subvarieties and branched coverings. Canonically associated to a finite morphism $f:X^n \to \mathbb{P}^n$ of degree d, there exists a vector bundle $E \to \mathbb{P}^n$ of rank d-1 having the property that f factors through an embedding of X in the total space of E (Sect. 1). An important fact about coverings of projective space is that these bundles are always ample. This leads one to consider quite generally a smooth *n*-dimensional projective variety Y, an ample vector bundle $E \to Y$ of rank e, and a non-singular projective variety X of dimension n embedded in the total space of E:

$$\begin{array}{c} X \hookrightarrow E \\ \searrow \swarrow \\ Y \end{array}$$

Inspired by Hartshorne's proof [H2, H3] of the Barth theorem, we show in Sect. 2 that under these circumstances one has isomorphisms $H^i(Y, \mathbb{C}) \to H^i(X, \mathbb{C})$ for $i \leq n-e$. This yields Theorem 1. And in fact, by taking E to be the direct sum of e copies of the hyperplane line bundle on \mathbb{P}^n , one also recovers Barth's theorem for embeddings $X^n \to \mathbb{P}^{n+e}$.

In Sect. 3 we give two applications to low degree branched coverings of projective space by non-singular varieties. First we prove

Proposition 3.1. If $f: X^n \to \mathbb{P}^n$ has degree $\leq n-1$, then f gives rise to an isomorphism $\operatorname{Pic}(\mathbb{P}^n) \xrightarrow{\simeq} \operatorname{Pic}(X)$.

Proposition 3.1 allows us to analyze the rank two vector bundle associated to a triple covering, and we deduce

Proposition 3.2. If $f: X^n \to \mathbb{P}^n$ has degree three, and if $n \ge 4$, then f factors through an embedding of X in a line bundle over \mathbb{P}^n .

This generalizes the familiar fact that a non-singular subvariety of projective space having degree three and dimension at least four is necessarily a hypersurface.

It was shown in [G-L], where Theorem 1 was announced, that if $f:X^n \to \mathbb{P}^n$ is a covering of degree $\leq n$, then X is algebraically simply connected. Deligne [D] and Fulton [F] subsequently proved that in fact the topological fundamental group of X is trivial. This result, plus the analogy with Larsen's extension of the Barth theorem [L, B2], lead one to conjecture that in the situation of Theorem 1 the homomorphisms $f_*:\pi_i(X)\to\pi_i(\mathbb{P}^n)$ are bijective for $i\leq n+1-d$. Deligne [D] has recently stated a conjecture which – at least in certain cases – would imply this homotopy version of Theorem 1.

Excellent accounts of Barth's theorem and related work may be found in Hartshorne's survey articles [H2] and [H3]. Sommese [S] emphasizes the role played by ampleness in Barth-type results. Along different lines, Berstein and Edmonds [B-E] have obtained an inequality relating the degree of a branched covering $f: X \to Y$ of topological manifolds to the lengths of the cohomology algebras of X and Y. They sketch some applications to branched coverings of \mathbb{P}^n by algebraic varieties in Sect. 4 of their paper.

0. Notation and Conventions

0.1. Except when otherwise indicated, we deal with *non-singular* irreducible complex algebraic varieties. By a branched covering, we mean a finite surjective morphism.

0.2. $H^*(X)$ denotes the cohomology of X with complex coefficients.

0.3. If E is a vector bundle on X, $\mathbb{P}(E)$ denotes the bundle whose fibre over $x \in X$ is the projective space of one-dimensional subspaces of E(x). We follow Hartshorne's definition [H1] of an ample vector bundle.

1. The Vector Bundle Associated to a Branched Covering

Consider a branched covering $f: X \to Y$ of degree d. As we are assuming that X and Y are non-singular, f is flat, and consequently the direct image $f_*\mathcal{O}_X$ is locally free of rank d on Y. The trace $\operatorname{Tr}_{X/Y}: f_*\mathcal{O}_X \to \mathcal{O}_Y$ gives rise to a splitting

$$f_*\mathcal{O}_X = \mathcal{O}_Y \oplus F \; ,$$

where $F = \ker(\operatorname{Tr}_{X/Y})$. We shall be concerned with the rank d-1 vector bundle $E = F^{\vee}$

on Y. We refer to E as the vector bundle associated to the covering f. Recall that as a variety, E can be identified with $\text{Spec}(\text{Sym}_Y(F))$.

Lemma 1.1. The covering $f: X \rightarrow Y$ factors canonically as the composition

 $X \hookrightarrow E \to Y,$

where $E \rightarrow Y$ is the bundle projection, and $X \rightarrow E$ is a closed embedding.

Proof. The natural inclusion $F \to f_* \mathcal{O}_X$ of \mathcal{O}_Y -modules determines a surjection $\operatorname{Sym}_Y(F) \to f_* \mathcal{O}_X$ of \mathcal{O}_Y -algebras. Taking spectra, we obtain a canonically defined embedding $X \to E$ over Y. QED

When $f: X \to Y$ is a double covering, for example, the lemma yields the familiar representation of X as subvariety of a line bundle over Y.

A basic property of coverings of projective space is that the vector bundles obtained by this construction are ample:

Proposition 1.2. Let *E* be the vector bundle on \mathbb{P}^n associated to a branched covering $f: X^n \to \mathbb{P}^n$. Then E(-1) is generated by its global sections. In particular, *E* is ample.

Proof. It suffices to show that E(-1) is 0-regular, i.e. that

 $H^{i}(\mathbb{P}^{n}, E(-i-1)) = 0 \text{ for } i > 0$

(cf. [M1, Lecture 14]). It is equivalent by Serre duality to verify

(*) $H^{n-i}(\mathbb{P}^n, F(i-n)) = 0$ for i > 0,

where as above $F = E^{\cdot}$. When i = n, (*) is clear, since

 $H^{0}(X, \mathcal{O}_{X}) = H^{0}(\mathbb{P}^{n}, f_{*}\mathcal{O}_{X}) = H^{0}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}) \oplus H^{0}(\mathbb{P}^{n}, F) ,$

and $H^0(X, \mathcal{O}_X) = H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = \mathbb{C}$. In the remaining cases 0 < i < n, we note similarly that

$$H^{n-i}(\mathbb{P}^n, F(i-n)) = H^{n-i}(\mathbb{P}^n, f_*\mathcal{O}_X(i-n))$$

= $H^{n-i}(X, f^*\mathcal{O}_{on}(i-n)).$

But for 0 < i < n, $f^* \mathcal{O}_{\mathbb{P}^n}(i-n)$ is the dual of an ample line bundle on X, whence $H^{n-i}(X, f^* \mathcal{O}_{\mathbb{P}^n}(i-n)) = 0$ by the Kodaira vanishing theorem. QED.

We remark that the ampleness of the vector bundle associated to a branched covering $f: X \rightarrow Y$ has a striking geometric consequence, concerning the ramification of f. Specifically, consider the local degree

 $e_f(x) = \dim_{\mathbb{C}}(\mathcal{O}_x X/f * \mathfrak{m}_{f(x)})$

of f at $x \in X$, which counts the number of sheets of the covering that come together at x (cf. [M2, Appendix to Chap. 6]).

Proposition 1.3. If the vector bundle associated to a branched covering $f: X^n \to Y^n$ of projective varieties is ample, then there exists at least one point $x \in X$ at which

$$e_f(x) \ge \min(\deg f, n+1).$$

So for instance if deg $f \ge n+1$, then n+1 or more branches of the covering must come together at some point of X. For coverings of \mathbb{P}^n , the existence of such higher ramification points was proved with Gaffney [G-L] as a consequence of the Fulton-Hansen connectedness theorem [F-H]. (The definition of $e_f(x)$ adopted in the more general setting of [G-L] reduces to the one stated above thanks to the fact that we are dealing with non-singular complex varieties.)

Sketch of Proof of (1.3). The argument given in [G-L, Sect. 2] goes over with only minor changes once we know the following:

If S is a possibly singular integral projective variety of dimension ≥ 1 , and if $g: S \rightarrow Y$ is a finite morphism, then $Z = X \times_Y S$ is connected.

We will show that in fact $h^0(Z, \mathcal{O}_Z) = 1$. To this end, let $f': Z \to S$ denote the projection. Then

 $f'_{*}\mathcal{O}_{Z} = g^{*}f_{*}\mathcal{O}_{X} = g^{*}\mathcal{O}_{Y} \oplus g^{*}F,$

where F is the dual of the vector bundle associated to f. Since g is finite and F^{*} is ample, $g^{*}F$ is the dual of an ample vector bundle on the positive-dimensional integral projective variety S. Therefore $h^{0}(S, g^{*}F) = 0$, and

 $h^{0}(Z, \mathcal{O}_{Z}) = h^{0}(S, f'_{*}\mathcal{O}_{Z}) = h^{0}(S, \mathcal{O}_{S}) = 1$. QED

2. A Barth-Type Theorem

Our object in this section is to prove the following theorem. Recall that we are dealing with irreducible nonsingular varieties.

Theorem 2.1. Let Y be a projective variety of dimension n, and let $E \rightarrow Y$ be an ample vector bundle of rank e on Y. Suppose that $X \subseteq E$ is an n-dimensional projective variety embedded in E. Denote by f the composition $X \rightarrow E \rightarrow Y$. Then the induced maps

 $f^*: H^i(Y) \to H^i(X)$

are isomorphisms for $i \leq n - e$.

Note that f, being affine and proper, is finite.

In view of (1.1) and (1.2), Theorem 1 stated in the introduction follows immediately. More generally, we see that if Y^n is projective, and if $f:X^n \to Y^n$ is a branched covering of degree d such that the vector bundle associated to f is ample, then the homomorphisms $f^*:H^i(Y)\to H^i(X)$ are bijective for $i\leq n+1-d$. For example, if $f:X^n\to Y^n$ is a double cover branched along an ample divisor on Y, then $H^i(Y) \cong H^i(X)$ for $i\leq n-1$.

Remark 2.2. Theorem 1 is sharp "on the boundary of its applicability", i.e. there exists for every $n \ge 1$ a covering $f: X^n \to \mathbb{P}^n$ of degree n+1 with $H^1(X) \ne 0$. Assuming $n \ge 2$, for example, start with an elliptic curve $C \subseteq \mathbb{P}^n$ of degree n+1, with C not

contained in any hyperplane, and consider the incidence correspondence

$$X = \{(p, H) | p \in H\} \subseteq C \times \mathbb{P}^{n*}.$$

X is a \mathbb{P}^{n-1} -bundle over C, whence $H^1(X) \neq 0$, and the second projection gives a covering $f: X^n \to \mathbb{P}^{n*}$ of degree n+1. (The reader may find it amusing to check that the vector bundle associated to this covering is isomorphic to the tangent bundle of \mathbb{P}^n .) Similarly, if $C \subseteq \mathbb{P}^n$ is a rational normal curve of degree n, we obtain an *n*-sheeted covering $f: X \to \mathbb{P}^{n*}$ with dim $H^2(X) = 2$. On the other hand, Proposition 3.2 and Theorem 2.1 show that as one would expect, Theorem 1 is not sharp for all d and n.

Remark 2.3. It follows from Theorem 1 that if $f:X^n \to \mathbb{P}^n$ is a branched covering of degree d, and if $S, T \subseteq X$ are (possibly singular) subvarieties such that codim $S + \operatorname{codim} T \leq n+1-d$, then S meets T. (The first non-trivial case is when d=n-1, the assertion then being that any two divisors on X must meet.) This result remains true even if X is singular. For by [G-L, Theorem 1], there exists a subvariety $R \subseteq X$ of codimension $\leq d-1$ such that f is one-to-one over f(R). And $f(R) \cap f(S) \cap f(T)$ is non-empty for dimensional reasons.

Remark 2.4. Theorem 2.1 implies the Barth theorem for embeddings $X^n o \mathbb{P}^{n+e}$. In fact, choose a linear space $L \subseteq \mathbb{P}^{n+e}$ of dimension e-1, with L disjoint from X, and consider the projection $(\mathbb{P}^{n+e}-L) \to \mathbb{P}^n$ centered along L. The variety $\mathbb{P}^{n+e}-L$ is isomorphic over \mathbb{P}^n to the total space of $\mathcal{O}_{\mathbb{P}^n}(1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^n}(1)$ (e summands), and we conclude from (2.1) that $H^i(\mathbb{P}^n) \xrightarrow{\sim} H^i(X)$ for $i \leq n-e$. But this is equivalent to Barth's assertion.

The remainder of Sect. 2 is devoted to the proof of (2.1). The argument is inspired by Hartshorne's simple proof of the Barth theorem [H2, p. 1020; H3, p. 147] and by Sommese's demonstration of a related result [S, Proposition 2.6].

We assume henceforth that $e \leq n$. Let $\pi: \overline{E} = \mathbb{P}(E \oplus 1) \to Y$ be the projective completion of E. One has the commutative diagram

$$\begin{array}{c} X \stackrel{j}{\to} \overline{E} \\ f \searrow \quad \swarrow^{\pi} \\ Y, \end{array}$$

where *j* denotes the composition of the given embedding $X \hookrightarrow E$ with the natural inclusion $E \subseteq \overline{E}$. Let $\xi = c_1(\mathcal{O}_{\overline{E}}(1)) \in H^2(\overline{E})$, and let $\eta_X \in H^{2e}(\overline{E})$ be the cohomology class defined by X. The class ξ represents the divisor at infinity in \overline{E} [i.e. $\mathbb{P}(E) \subseteq \mathbb{P}(E \oplus 1)$], and X does not meet this divisor. Hence

(2.5) $j^*(\xi) = 0$.

We claim next that $j^*(\eta_X) \in H^{2e}(X)$ is given by

(2.6)
$$j^*(\eta_X) = (\deg f)c_e(f^*E)$$
.

Indeed, in view of (2.5) it suffices to verify the formula

(*)
$$\eta_X = (\deg f) \sum_{i=0}^{e} c_i(\pi^* E) \xi^{e-i}.$$

To this end, note that the fundamental class [X] of X is homologous in E to $(\deg f)[Y]$, where $Y \subseteq E$ is the zero section. Hence $\eta_X = (\deg f)\eta_Y$, $\eta_Y \in H^{2e}(\overline{E})$ being the cohomology class defined by Y. Now if $Q = \pi^*(E \oplus 1)/\mathcal{O}_{\overline{E}}(-1)$ denotes the universal quotient bundle on \overline{E} , then one has $\eta_Y = c_e(Q)$, and (*) follows.

The key to the argument is having some control over the effect on $H^*(X)$ of multiplication by $j^*(\eta_X)$. The requisite fact is provided by Sommese's formulation of a result of Bloch and Geiseker [B-G] on the top Chern class of an ample vector bundle:

(2.7) Let F be an ample vector bundle of rank $e \leq n$ on a (non-singular, irreducible) projective variety X of dimension n. Then multiplication by $c_e(F)$ gives surjections

$$H^{n-e+l}(X) \rightarrow H^{n+e+l}(X)$$

for $l \ge 0$.

See [S, Proposition 1.17] for the proof, which ultimately depends on the Hard Lefschetz theorem.

These preliminaries out of the way, we conclude the proof of Theorem 2.1. Note that it suffices to prove

(*) $\begin{cases} f^*: H^{n+e+l}(Y) \to H^{n+e+l}(X) \text{ is} \\ \text{surjective for } l \ge 0. \end{cases}$

Indeed, $H^*(Y)$ injects into $H^*(X)$ for any generically finite morphism $X^n \to Y^n$, and so (2.1) is equivalent to (*) by Poincaré duality.

Consider the commutative diagram

where j_* is the Gysin map defined by Poincaré duality from $H_{n+e-l}(X) \to H_{n+e-l}(\overline{E})$. Since f is finite, f^*E is an ample vector bundle on X, and it follows from (2.6) and (2.7) that $H^{n-e+l}(X) \to H^{n+e+l}(X)$ is surjective. Hence so also is j^* . But $H^*(\overline{E})$ is generated over $H^*(Y)$ by $\xi \in H^2(\overline{E})$, and j^* kills ξ . The surjectivity of j^* therefore implies the surjectivity of f^* . This completes the proof.

Remark 2.8. We mention some additional results concerning the geometry of an ample vector bundle $E \to \mathbb{P}^n$ of rank *e*. First, if $X \subseteq E$ is a (non-singular) projective variety of dimension *a*, then the maps $H^i(\mathbb{P}^n) \to H^i(X)$ are isomorphisms for $i \leq 2a - n - e$. The proof is similar to that just given, except that formula (2.6) is replaced by the observation that the normal bundle of X in E is ample. Along somewhat different lines, the connectedness theorem of Fulton and Hansen [F-H] can be used to prove an analogous result for ample bundles on \mathbb{P}^n , from which one deduces the following:

If S and T are irreducible but possibly singular projective subvarieties of E, then (i) $S \cap T$ is connected and non-empty if dim $S + \dim T \ge n + e + 1$; (ii) S is algebraically simply connected if

 $2 \dim S \ge n + e + 1$.

In particular, if $f:X^n \to \mathbb{P}^n$ is a branched covering of degree d, with X nonsingular, then assertions (i) and (ii) apply with e=d-1 to subvarieties S, $T \subseteq X$. Details appear in [Lz].

Remark 2.9. It is natural to ask whether in the situation of Theorem 2.1 the relative homotopy groups $\pi_i(E,X)$ vanish for $i \leq n-e+1$. At least when $Y = \mathbb{P}^n$, it seems reasonable to conjecture that this is so. Assertion (ii) of the previous remark, applied with S=X, points in this direction. Larsen's theorem [L] provides additional evidence.

3. Applications to Coverings of \mathbb{P}^n of Low Degree

We give two applications of the results and techniques of the previous sections to branched coverings $f: X^n \to \mathbb{P}^n$ of low degree. We continue to assume that X is irreducible and non-singular. The first result deals with Picard groups:

Proposition 3.1. If $f: X^n \to \mathbb{P}^n$ has degree $\leq n-1$, then $f^*: \operatorname{Pic}(\mathbb{P}^n) \to \operatorname{Pic}(X)$ is an isomorphism.

Proof. A well-known argument (cf. [H3, p. 150]) shows that the proposition is equivalent to the assertion that $f^*: H^2(\mathbb{P}^n, \mathbb{Z}) \to H^2(X, \mathbb{Z})$ is an isomorphism. [Briefly: one looks at the exponential sequences on \mathbb{P}^n and on X, noting that Theorem 1, and the Hodge decomposition yield $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$.] Theorem 1 implies that $H_2(X, \mathbb{Z})$ has rank one. On the other hand, X is algebraically simply connected ([G-L, Theorem 2]), whence $H_1(X, \mathbb{Z}) = 0$. It follows from the universal coefficient theorem that $H^2(X, \mathbb{Z}) = \mathbb{Z}$. Finally, as f has degree $\leq n-1 < 2^n$, f^* must map the generator of $H^2(\mathbb{P}^n, \mathbb{Z})$ to the generator of $H^2(X, \mathbb{Z})$.

As a second application, we derive a fairly explicit description of all degree three coverings $f: X^n \to \mathbb{P}^n$ with $n \ge 4$. Specifically, we will prove

Proposition 3.2. Let $f: X^n \to \mathbb{P}^n$ be a triple covering. Denote by b the degree of the branch divisor of f.

(i) If $\omega_X = f^* \mathcal{O}_{\mathbb{P}^n}(k)$ for some $k \in \mathbb{Z}$, then f factors through an embedding of X in a line bundle $L \to \mathbb{P}^n$, and conversely. In this case,

 $6 \deg(L) = b$.

(ii) The condition in (i) always holds if $n \ge 4$.

By the branch divisor of a covering $f: X^n \to \mathbb{P}^n$ we mean the push-forward to \mathbb{P}^n of the ramification divisor of f.

Statement (ii) is a consequence of Proposition 3.1, so only (i) needs proof. The method is to focus on the rank two vector bundle E on \mathbb{P}^n associated to f (Sect. 1). Lemmas 3.3 and 3.4 show that if $\omega_X = f^* \mathcal{O}_{\mathbb{P}^n}(k)$, then E at least has the form that it should if X is to embed in a line bundle. Finally we show that this implies that f actually admits the indicated factorization.

Lemma 3.3. Let $L \to \mathbb{P}^n$ be an ample line bundle, and let $Z \subseteq L$ be a possibly singular projective variety of dimension n embedded in L. Denoting by d the degree of the natural map $g: Z \to \mathbb{P}^n$, one has

$$g_* \mathcal{O}_Z = \mathcal{O}_{\mathbb{P}^n} \oplus L^{-1} \oplus \ldots \oplus L^{1-d}$$

Proof. Let $\pi: \overline{L} = \mathbb{P}(L \oplus 1) \to \mathbb{P}^n$ be the projective completion of L. Considering Z as a divisor on \overline{L} , and noting that Z does not meet the divisor at infinity $\mathbb{P}(L) \subseteq \mathbb{P}(L \oplus 1)$, we see that $\mathcal{O}_{\overline{L}}(-Z) = \mathcal{O}_{\overline{L}}(-d) \otimes \pi^* L^{-d}$. Using [H4, Exercise III.8.4] to calculate $R^1 \pi_* \mathcal{O}_{\overline{L}}(-d)$, the assertion follows from the exact sequence $0 \to \mathcal{O}_{\overline{L}}(-Z) \to \mathcal{O}_{\overline{L}} \to \mathcal{O}_{Z} \to 0$ upon taking direct images. QED

Lemma 3.4. Under the assumption of (i) of Proposition 3.2, the vector bundle E associated to f has the form $E = L \oplus L^2$, where $6 \deg(L) = b$. Equivalently, $f_* \mathcal{O}_X = \mathcal{O}_{\mathbb{P}^n} \oplus L^{-1} \oplus L^{-2}$

Proof. By duality for f, one has $f_*\omega_X = \omega_{\mathbb{P}^n} \otimes (f_*\mathcal{O}_X)^*$, while the hypothesis on ω_X yields $f_*\omega_X = (f_*\mathcal{O}_X)(k)$. Writing l = k + n + 1, we conclude the existence of an isomorphism

(*) $\mathcal{O}_{\mathbf{p}^n}(-l) \oplus E(-l) = \mathcal{O}_{\mathbf{p}^n} \oplus E^{\check{}}.$

Now the ramification divisor of f represents the first Chern class of $f^*\mathcal{O}_{\mathbb{P}^n}(l)$, and one deduces the relation b=3l. Note that in particular, l is positive. With this in mind, it is a simple exercise to show using (*) that $E = \mathcal{O}_{\mathbb{P}^n}(l/2) \oplus \mathcal{O}_{\mathbb{P}^n}(l)$. QED

Proof of 3.2. If f factors as stated, then X is a divisor on L, and hence $\omega_X = f^* \mathcal{O}_{\mathbb{P}^n}(k)$ for some $k \in \mathbb{Z}$. Conversely, suppose that ω_X is of this form. By (1.1) and (3.4) there is then an embedding $X \hookrightarrow L \oplus L^2$ over \mathbb{P}^n . Let $Z \subseteq L$ denote the image of X under the natural projection $\pi: L \oplus L^2 \to L$, and consider the resulting factorization of f:

$$\begin{array}{ccc} X \hookrightarrow L \bigoplus L^2 \\ \stackrel{p\downarrow}{=} & \downarrow^{\pi} \\ Z & \longrightarrow L \\ \stackrel{g_{\downarrow}}{=} & \swarrow \\ p^n \end{array} f = g \circ p$$

We will show that p is an isomorphism.

To this end, note first that p is birational. For if on the contrary deg p = 3, then g would be an isomorphism and f would factor through an embedding of X in $\pi^{-1}(Z)$, i.e. in the line bundle $L^2 \to Z = \mathbb{P}^n$. But then using (3.3) to compute $f_* \mathcal{O}_X$, we would arrive at a contradiction to (3.4). Hence g has degree 3, and upon comparing the calculations of (3.3) and (3.4), one finds that

$$(*) \quad g_* \mathcal{O}_Z \simeq f_* \mathcal{O}_X.$$

But this implies that p is an isomorphism. In fact, let \mathscr{F} be the cokernel of the natural inclusion $\mathscr{O}_Z \to p_*\mathscr{O}_X$. It follows from (*) that $H^0(Z, \mathscr{F} \otimes g^*\mathscr{O}_{\mathbb{P}^n}(d)) = 0$ for $d \ge 0$, and hence $\mathscr{F} = 0$. QED

Remark 3.5. As a special case of Proposition 3.2 [with $L = \mathcal{O}_{\mathbb{P}^n}(1)$] one recovers the well known fact that the only non-singular subvarieties of projective space having degree three and dimension at least four are hypersurfaces. For coverings $f: X^n \to \mathbb{P}^n$ of larger degree, however, the analogy with subvarieties does not hold as directly. For instance, a non-singular projective subvariety of degree five and dimension ≥ 7 is a hypersurface. On the other hand, one may construct in the following manner five-sheeted coverings $f: X^n \to \mathbb{P}^n$, with *n* arbitrarily large, that do not factor through line bundles. Let $L = \mathcal{O}_{\mathbb{P}^n}(1)$, and consider the vector bundle $\pi: E = L^2 \oplus L^3 \to \mathbb{P}^n$. Then there are canonical sections $S \in \Gamma(E, \pi^*L^2)$, $T \in \Gamma(E, \pi^*L^3)$ which serve as global coordinates on *E*. Choose forms $A \in \Gamma(\mathbb{P}^n, L^5)$, $B \in \Gamma(\mathbb{P}^n, L^6)$, and consider the subscheme $X \subseteq E$ defined by the common vanishing of the sections

 $ST + \pi^* A \in \Gamma(E, \pi^* L^5)$

 $S^3 + T^2 + \pi^* B \in \Gamma(E, \pi^* L^6).$

One checks that the natural map $f: X^n \to \mathbb{P}^n$ is finite of degree five. X is connected (at least when $n \ge 2$), and for generic choices of A and B, X is non-singular. Finally, the scheme-theoretic fibre of X over a point in $V(A, B) \subseteq \mathbb{P}^n$ has a two-dimensional Zariski tangent space, which shows that f cannot factor through an embedding of X in a line bundle over \mathbb{P}^n . [Alternately, this follows by (3.3) from a computation of $f_* \mathcal{O}_X$:

$$f_*\mathcal{O}_X = \mathcal{O}_{\mathbb{P}^n} \oplus L^{-2} \oplus L^{-3} \oplus L^{-4} \oplus L^{-6}.$$

Acknowledgements. I am endebted to J. Hansen, J. Harris, R. MacPherson, and K. Vilonen for numerous valuable discussions. I would especially like to thank my advisor, W. Fulton, whose many fruitful suggestions have been decisive to this work.

References

- [B1] Barth, W.: Transplanting cohomology classes in complex-projective space. Amer. J. Math. 92, 951–967 (1970)
- [B2] Barth, W.: Larsen's theorem on the homotopy groups of projective manifolds of small embedding codimension. Proc. Symp. Pure Math. 29, 307-313 (1975)
- [B-E] Berstein, I., Edmonds, A.: The degree and branch set of a branched covering. Invent. Math. 45, 213-220 (1978)
- [B-G] Bloch, S., Gieseker, D.: The positivity of the Chern classes of an ample vector bundle. Invent. Math. 12, 112-117 (1971)
- [D] Deligne, P.: Letter to W. Fulton, 18 Nov. 1979
- [F] Fulton, W.: Notes on connectivity in algebraic geometry (preprint)
- [F-H] Fulton, W., Hansen, J.: A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings. Ann. of Math. 110, 159-166 (1979)
- [G-L] Gaffney, T., Lazarsfeld, R.: On the ramification of branched coverings of ℙⁿ. Invent. Math. (to appear)
- [H1] Hartshorne, R.: Ample vector bundles. Publ. Math. IHES 29, 63-94 (1966)
- [H2] Hartshorne, R.: Varieties of small codimension in projective space. Bull. AMS 80, 1017–1032 (1974)
- [H3] Hartshorne, R.: Equivalence relations on algebraic cycles and subvarieties of small codimension. Proc. Symp. Pure Math. 29, 129-164 (1975)

- [H4] Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics 52. Berlin, Heidelberg, New York: Springer 1977
- [L] Larsen, M.: On the topology of complex projective manifolds. Invent. Math. 19, 251-260 (1973)
- [Lz] Lazarsfeld, R.: Thesis, Brown University 1980
- [M1] Mumford, D.: Lectures on curves on an algebraic surface. Ann. of Math. Stud. 59 (1966)
- [M2] Mumford, D.: Algebraic geometry. I. complex projective varieties. In: Grundlehren der
- mathematischen Wissenschaften, Vol. 221, Berlin, Heidelberg, New York: Springer 1976
- [S] Sommese, A.: Submanifolds of abelian varieties. Math. Ann. 233, 229-256 (1978)

Received February 13, 1980

Note added in proof. Using results of Goresky-MacPherson and Deligne, we have proved the homotopy analogue of Theorem 1. The argument appears in [Lz], and will be published elsewhere.