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Introduction

Let C be a smooth complex projective curve of genus ¢, and let J be the Jacobian of C.
Upon choosing a base-point in O, J may be identified with the set of linear equivalence
classes of divisors of degree d on C. Denote by W the algebraic subvariety of J para-
metrizing divisors which move in a linear system of dimension at least r. A fundamental
theorem of Kempf [9] and Kleiman and Laksov [11, 12] asserts that these loci are non-
empty when their expected dimension

g=g—(r+1)(g—d+r)

is non-negative. We complement this existence theorem with two results on the global

structure of W3 when ¢ >0. First of all, for an arbitrary curve C, we prove

TueoREM L. If p>0, then W7 is connected.

When C is generic (in the sense of moduli), deep results about the local geometry of W]
have been obtained by Griffiths and Harris [5] and by Gieseker [4]. Combining these with
Theorem I, we deduce the

CoroLLARY. For a generic curve C, Wy is irreducible when 9>0.

By a standard construction, W5 may be realized as the locus where a certain homomorphism
of vector bundles on J drops rank. Theorem I then becomes a simple consequence of a

general result—of independent interest—on the connectivity of such degeneracy loci.

(*) Partially supported by the J. S. Guggenheim Foundation and by NSF Grant MCS 78-04008.
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Specifically, let X be an irreducible complex projective variety of dimension =, and

let
o: E—->F

be a homomorphism of vector bundles of ranks ¢ and f on X. Put
D,(0) ={x € X |rank o(z) < k}.

If non-empty, the degeneracy locus D,(c) has codimension <(e—£k)(f—%k) in X. Under a
suitable positivity hypothesis on the bundles in question, we prove that .D,(o) is connected

as soon as its expected dimension is positive:

TrEOREM II. Assume that the vector bundle E*® F=Hom(E, F) is ample. Then:

{a} Do) 18 non-empty when n={(e—k)(f —Fk),
and
(b)y Dy(o) ts connected when n>(e—k)(f—Fk).

It was suggested in [3, § 10] that such a result should hold. Note that it is not assumed
that D, (o) actually has the expected dimension.

The present paper is divided into two parts. § 1 is devoted to the proof of Theorem
11, and to a simple consequence concerning the singularities of finite mappings to projec-
tive space. The application to loci of special divisors occupies § 2. Our construction of W}
follows the well-known approach of Grothendieck, Mattuck, Schwartzenberger, Kempf,
Kleiman and Laksov. Since only an elementary part of their work is needed, we have
included details for the convenience of the reader. We remark that statement (a) of Theo-
rem IT gives rise to a simple proof of the Kempf-Kleiman-Laksov existence theorem for
special divisors, bypassing the Chern class computations of the original proofs. On the other
hand, those calculations lead to a formula for the cohomology class of W}, which is impor-
tant in enumerative questions. We recommend Chapter 3 of the forthcoming book [1],
whose notation we follow, for an account of results along these lines. \

Finally, a word on the proof of Theorem II may prove helpful. The strategy is to
reduce the problem to proving the vanishing of certain singular cohomology groups, and
then to draw on Lefschetz-type theorems to establish these vanishings. Consider for example
the special case when E is a trivial line bundle and k=0, so that Dy(c)=Z(c), the zero-
locus of the section ¢ of the ample vector bundle F. If F is a line bundle, then X —Z(o) is
affine; hence H{(X —Z(¢))=0 for ;>dim X +1, and this easily leads to a proof that Z(o)
is connected if dim X >2. When f=rk (F)>1, ¢ determines a section ¢* of the line bundle
O(1) on P(F*). Since P(F*) —Z(c*) fibres over X —Z(¢) with fibres ¢/-1, and since O(1) is
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ample on P(F*) by the ampleness of F, one deduces that H{(X —Z(c)) =0 for ¢ >dim X +f;
the connectedness of Z(c) follows when dim X > f+ 1. This argument was used by Sommese
[15], and an elaboration of this construction plays an important role in the proof of Theo-
rem IT.

Acknowledgements. We have benefitted from conversations with E. Arbarello, D. Eisenbud
and K. Vilonen. We are particularly grateful to J. Harris for his suggestions regarding the
application to special divisors.

§ 1. Connectedness of degeneracy loci

We start with some notation. If 4 is a vector bundle on a variety X, A(z) denotes the
fibre of 4 at a point x€ X. P(4) is the projective bundle whose fibre over z € X is the pro-
jective space of one-dimensional subspaces of A(z). Finally, recall that by definition, 4 is
ample if the line bundle Op(1) on P(A4*) is ample [7].

This section is devoted to the proof of

TrrorREM 1.1. Let X be an irreducible complex projective variety of dimension n,

and let
o E—~F

be a homomorphism of vector bundles on X of ranks e and f. Assume that the vector bundle

E*® F =Hom(E, F)
ts ample, and let
Dy(o) = {x € X| rank o(x) < k}.
Then:

(a) Dylo) is non-empty if n=>(e—k)(f —k),
and
(b) Dy(o) is connected when n>(e—k)(f —k).

Proof. To begin with, note that it suffices to prove the theorem for normal varieties.
For if »: XX is the normalization of X, then v gives rise to a homomorphism &: v*(E)~>
v*(F) of vector bundles on X, and D,(5) surjects onto Dy(c). Moreover »*(E*)@v*(F) is the
pull-back of an ample vector bundle under a finite morphism, and hence is ample. Thus,
we may assume that X is normal. Furthermore, replacing ¢ if necessary by its transpose,
we may suppose that f>e.

Put k' =e—k, and let
G =0 (B)~X
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be the Grassmannian bundle of #'-planes in . Denote by 8 the rank %’ tautological sub-
bundle of n*E on G. Then there is a natural homomorphism

7: S—a*F,

defined as the composition § Sa* B m*F. Thus v takes a k'-plane in E(x) to its image
under ¢(z). Let
YcG

denote the zero-locus of v (i.e. the zero-set of the corresponding section of S*@z*F). Then
Y surjects onto D,(c), so it is enough to show that ¥ is non-empty and connected in the
appropriate range of dimensions. To this end, we will study the cohomology of G— Y.
Specifically, letting 7 =7+ k(e —k) =dim &, we will prove

ProrositioN 1.2. If i=2r+k'f=n+(f+k)(e—k), then
HYG-Y;Z)=0.
Observe that the proposition indeed implies the theorem. For if n > (¢ —k)(f —k), then
r=n+kle—k)=(e—-k)f,

and so H¥(G — Y; Z)=0. In particular, & — Y is not compact. Therefore Y, and hence also
D,(¢), must be non-empty. Similarly, if »> (e —k)(f — k), then the proposition implies that
H,, (G—7Y;Q)=0. Since X—and thus G—is normal, the following lemma yields the
vanishing of HY(G, ¥; Q), and hence the connectivity of Y.

LemMA 1.3. Let G be a normal projective variety of dimension r, and let Y= G be a

closed algebraic subset. Then there is an injection
HYG, Y; Q) > Hyr y(G—T; Q).

Proof. This follows from the exact sequence of low degree terms of the Zeeman spectral
sequence (cf. [13]). Q.E.D.

Lemma 1.3 was pointed out to us by K. Vilonen. When X is smooth, one can use

Lefschetz duality on & in place of Lemma 1.3.
The proof of Proposition 1.2 depends on a simple construction, which we now describe.

Consider a homomorphism
h:A—>B

of vector bundles of ranks ¢ and b on a variety W. Let ¥ < W be the zero-locus of &, k being
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considered as a section of the vector bundle 4*® B=Hom(4, B). Now on the projective
bundle p: P=P(Hom(B, 4))->W, there is a *“tautological” map

p*B~p*A® Op(1).

Composing this with p*h: p*4—p*B, one obtains a homomorphism A*: p*4—p*4A® Op(1).

The trace of h* then defines a section
tr (i*) € (P, Ogp(1)).

Denote by Y*<P the zero-locus of tr (h*). Concretely, one may think of a point in
P(Hom(B, 4)) as a homomorphism ¢: B(z)—>A(x) (defined modulo secalars), where
x=p(p)EW, and then

Y* = {p€P(Hom(B, A4))| tr (poh(p(p))=0}.
The point to observe is that the projection p gives rise to a map
P-Y*->W-Y
which is locally trivial, with fibres ¢(*-1, In particular,
HYW =Y)3 HP — Y*) (1.4)

is an isomorphism. (Compare [15].)

Proof of Proposition 1.2. We first apply the construction just described to the homo-

morphism 7: §—>a*F on G. Thus we consider the projective bundle
p: P =P(Hom(n*F, S)) > G,
and the section tr (t*) EI'(P, Op(1)). Let Y*<P denote the zero locus of tr (z*), and set
V*¥=P—Y*
In view of (1.4), the proposition is equivalent to
H{V* Z)=0 fori=dim V*+1. (1.5)

On the other hand, consider the projective bundle q: P’ =P(Hom(F, E))->X over X.
Then there is a natural map g: P—P’, which has the following concrete description. We may

think of a point in P as a homomorphism ¢: F(x)—S(x) (mod scalars), where z=mop(p) € X,
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and S(x)< E(x) is a subspace of dimension &’. Then g(p) EP’ is represented by the composi-
tion F(z)—>8(x)—>E(x). Let Z*<P’ denote the divisor of the section tr (¢*) EL'(P’, Op-(1))
arising from ¢: E— F. Then ¢g-1(Z*)=Y*, and so ¢ restricts to a proper morphism

h: V*=P—-Y*-P' -Z* = U*,

where U* denotes the complement of Z* in P’. But since Hom(Z, F) is.an ample vector
bundle on X, the line bundle Op.(1) is ample on P’ =P(Hom(E, F)*). Thus U* is an affine
variety. The strategy now is to use the Leray spectral sequence for # to deduce (1.5) from
a theorem on the vanishing of the cohomology of an affine variety.

To this end, we analyze the fibres of #. For 0 <I<k’ —1, define a subvariety P;< P’ by

and let
U¥=U*np,.

Then each U} is an affine variety, with U}i1< U7, and
codimyy U} = 2kl + 12+ (f—e)l. (1)

If ¢’ €P’ is represented by a homomorphism ¢”: F(z)—> E(x) (x=¢(¢') €X), and if p €P is
represented by ¢: F(z)—S(x), where S(z) is a ¥’-plane in E(z), then ¢ €4~(¢) if and only
if ¢’ coincides (mod scalars) with the composition F(x)—S(x)~E(x). Hence 5 maps V*
birationally onto Uj. Moreover the fibre of & over a point ¢’ € Uf — Ufyy is a Grassmannian
G(l,1+k), and so has dimension k. Since codimyy U} > 21k, the following lemma applies
to the map h: V*—>U§ to yield (1.5).

LevMA 1.6. Let f: X~ Y be a proper surjective morphism of irreducible varieties, with
Y affine. Assume that for each d=>0 the set

Y,={y€Y|dim f-Yy) >d}
has codimension > 2d in Y (so that in particular f is generically finite). Then
HYX,Z)=0 fori>dim X +1.
Proof. Consider the Leray spectral sequence

E3¢ = HX(Y, RY, L) = B**(X, Z)

(*) Recall that we are assuming that f>e.
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for f. Since f is proper, the sheaves

R, 2, R, T

are supported on Y,. But these are constructible sheaves on the affine variety ¥,, and so
their cohomology vanishes in degrees above the dimension of Y, (ef. Artin [2, Exp. XIV,
§2, §3, [16): \

H2(Y, R* Y, 7) = H/(Y, B**,Z)=0 for p>dim ¥ ,+1.

Since dim Y,;+2d<dim Y =dim X, one thus has E3?=0 for p+¢>dim X +1, and the
lemma follows. Q.E.D.

This completes the proof of Theorem 1.1.

Remark 1.7. At least if X is non-singular, the same proof works in characteristic p
using étale cohomology in place of singular cohomology. In the part of the argument
preceding Lemma 1.3, Hy(G — Y) is used in place of HY@, Y¥), and Poincaré duality be-
tween Hy(G—Y) and H* (G —Y) replaces Lemma 1.3 (ef. Deligne [2, Exp. XVIII]).

Remark 1.8. The locus D, (o) has a natural scheme structure, given locally by the
vanishing of the (k+1) x (k+ 1) minors of ¢. If X is non-singular, and D,(c) has the expected
codimension (e—k)(f—Fk), then Dy(c) is a Cohen-Macaulay scheme [10]. If, in addition,
Dy(0) is non-singular in codimension one—for example, if D;_;(c) is the singular locus of
D, (0)—then the connectivity of D,(c) is equivalent to the irreducibility of Dy(c). Indeed,
if 8 is the singular locus of D, (o), and D,{(c) is connected, and if the local ring of D,(0) has
depth at least two at every point of S, then a theorem of Hartshorne’s [6] asserts that
Dy (o) -8 is connected.

Remark 1.9. One expects a connectedness theorem such as Theorem 1.1 to extend to a
Lefschetz-type result on the vanishing of higher relative homology or homotopy groups
(ef. [3, § 9]). If X is non-singular, Proposition 1.2 and duality give (with notation as before)

H6, Y;Z) =0 fori<n-—(e—k)(f—Fk). *)

The corresponding groups HYX, Di(¢)) need not vanish, however. For example, the
Segre variety P* x P? in X =P?**! is the degeneracy locus D,(s), where ¢ is a 2 x (n+1)
matrix of linear forms, but Hy(X, D,(0))==0, even for large n. Nonetheless there is a partial

result, namely that the canonical map

Hi(Difo); Z) > H(X; Z)
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is surjective for ¢+ <n—(e—k)(f—k). This follows from (*) and the observation that in the

diagram
H(Y;Z)

H(G; 7)

H{(Dy(0); Z) —— H(X; Z),

the right-hand vertical map is always surjective.
We close this section with a simple application of Theorem 1.1. Giiven a morphism
f: X*— Y™ of non-singular varieties, with m >n, let df, denote the induced map of tangent

spaces at x€X. Set
Si(f) = {x € X| rank df, <n—1}.

Theorem 1.1 may be applied to the vector bundle homomorphism
df: Tx—~>f*Ty.

If Qy®f*Ty is ample, then 8,(f) will be non-empty if i(m —n+4)<n, and connected if
i(m —n+1) <n. These hypotheses are satisfied, for example, if ¥ =P™, if Q% is generated
by its global sections, and if f: X —P™ is any finite morphism. The following result applies

to more general varieties X,

ProrosiTioN 1.10. Let L be a very ample line bundle on a smooth n-dimensional variety
X. Let f: X—>P™ be the morphism defined by a base-point free linear system in |L®*|, for
some k=2. Then S{f) is non-empty if i(m —n+1) <n, and connected if i(m —n+1i)<n.

Proof. Let X —>P¥ be the embedding defined by L, so that f: X >P" ig given by homo-
geneous forms Fy, ..., F,, of degree k in the coordinates X, ..., Xy of P¥. Consider the

Euler sequence
0 - Op¥ = Opr(1)®W* D s Thor - 0,

Define E to be the kernel of the composition L®*V— T'px| X — N yjp#, and let F = (LO¥)®*D,
The Jacobian matrix (6F;/0X;) determines a morphism J: E—F so that the diagram

0 O« E T, 0
ok lJ ldf
0——0x— F — *Tpn —0

commutes. Then S,(f)=D,,;_;(J), and E*® F is ample, since it is a quotient of a direct
sum of copies of the ample line bundle L*® L& = L®%-D, Q.E.D.
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§ 2. Application to special divisors

Let O be a non-singular complex projective curve of genus g, let J =Pic® (C) be the
Jacobian of C, and fix once and for all a base-point P,€C. Given x€J, denote by L, the

corresponding line bundle of degree zero on C, and set
Wi ={x€J|k(C, L,® Oc(dP,)) = r+1}.

Thus W} parametrizes classes of divisors of degree d which move in a linear system of
(projective) dimension at least r. By a well-known construction which we review below, if
m>0 is a sufficiently large integer, then evaluation at ¢ distinet points P, ..., P, yields a
map
¢
HYC, L, ® Oc(mPy)) ~> @ O(P,)
-1

which globalizes to a homomorphism of vector bundles
op B~ F, (2.1)
on J, of ranks m+1—g¢g and ¢ respectively. Noting that
ker o(x) = H(C, L,® Og(mPy— 3 P})),

and taking {=m —d, one sees that Wj2= Dy(o,_,), where k=m —g—r. In particular, the
expected dimension of W7 is given by the Brill-Noether number
o=g—(r+1)(g—d+r).

For our purposes, the basic fact is

LEMMA 2.2. For any m>2g and t>1, En®@F, is an ample vector bundle on J.

Grant the lemma for the moment. Then Theorem 1.1(a) yields the result of Kempf [9]
and Kleiman-Laksov [11, 12] that W7 is non-empty when p >0, while Theorem 1.1(b)
implies

TaEOREM 2.3. W} is connected if p>0.
Furthermore, by Remark 1.9, the homomorphisms
H(Wa; Z)>H(J; Z)
wnduced by inclusion are surjective for ¢ <g.

On special curves, the loci Wi may well be reducible even when the Brill-Noether num-

ber p is positive. For example if C is trigonal and non-hyperelliptic, of genus 5, then W3 has
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two irreducible (but intersecting!) one-dimensional components. In fact, if D is a trigonal

divisor, then W} is swept out by the two families
{ID+PI}Pec, {IK‘_D—PI}PeC-

On a generic curve of genus g, however, this cannot happen. Indeed, Griffiths and Harris
[5] have shown that for a general curve, Wy has pure dimension g, and Gieseker [4] has very
recently proved that, for general O, W7 is singular only along W75, Hence from Remark

1.8 one deduces

CoroLLARY 2.4, If C is a generic curve, then WY is irreducible when ¢ >0.

The remainder of this section is devoted to the proof of Lemma 2.2. To fix notation,
we start by reviewing the construction of the vector bundle homomorphism (2.1). Let £
be the universal line bundle on J x O, so that L|p~'(z)=L,, where p:JxC—J and
q: J xC—~C are the projections. Letting L(P) denote the line bundle £|g~}(P) on J, we
normalize C (by tensoring with a line bundle from J) so that £(P,)=0;. Fix m>2g—1;
thus HYC, L,® O (mP,))=0 for all z€J. Then

£, d=efp*(c® g*Oo(mP,))

is a vector bundle of rank m 41 —g¢, and pushing forward L®g*Oy(mP,) via p, commutes
with base change. Let D, be the divisor P, +...+P, on C, and set

¢
Fy= Er)l ’:(Pz‘)'—‘i”*(fv@?*om)-

The homomorphism (2.1) arises by taking the direct images of the last two terms in the

exact sequence
0> LR O(mPy— D) > LRG*Oc(mPy) ~ LRG*Op, > 0 (2.5)

of sheaves on J x C.
Turning to the verification that

i
E,@F,= @ En®L(P)

is an ample vector bundle, the first point to observe is that it suffices to prove the ampleness
of Ej,. Indeed, since a direct sum of vector bundles is ample if and only if each summand
is [7], it is certainly enough to check the ampleness of E*® L(P) for an arbitrary point
PeC. Since C(Py)=0;, by varying P over C one exhibits £(P) as a deformation of a trivial
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line bundle. But quite generally, if X is an irreducible projective variety, and L a line
bundle on X algebraically equivalent to zero, then a vector bundle £ on X is ample if
and only if E@L is. For if zz: P(E*)—X is the projectivization of E*, then we may identify
P(E*) with P(E*®L*), and the assertion becomes that Op(l) is an ample line bundle on
P(E*) if and only if Op(1)®@a*L* is. Observing that ¢,(Op(1) ® p*L*) is numerically equiva-
lent to ¢,(Op(1)), this follows from Nakai’s criterion (cf. [8, Chapter IJ).

The ampleness of B, is equivalent, by definition, to the ampleness of the line bundle
Op(l) on P=P(E,). Letting t=1 and D,=P, in (2.5) and taking direct images on .J, one

obtains (for m>2¢) an exact sequence
0—>E,,~E,-0;~>0.

Such a sequence gives rise to a section s of Op(1) whose divisor is exactly the subvariety
P(E,_,)<P(H,). The crucial geometric fact is then the following (cf. [14] or [1]):

P(E,) is isomorphic to C,, the m-th symmetric product of C, and the divisor
P(E,, ;) corresponds to the (m—1)-th symmetric product C,_,, embedded in C, (2.6)
via the map D — D+ P,,.

Granting (2.6), the ampleness of Op(1)—and hence Lemma 2.2—follows from
Lemuma 2.7. For all m>1, C,_; is an ample divisor on C,,.

Proof. Fix a k-dimensional subvariety V< C,. By Nakai’s criterion, it suffices to
show that the intersection number {*- V is positive, where { denotes the numerical equiva-
lence class of C,,_;. For any P€C, let C,,_,(P) be the divisor on C,, obtained by embedding
Cpy in C, via the map D—D+P. Then G, _,=C, ,(P,) is algebraically—and hence
numerically—equivalent to C,_,(P) for any P€(. Now given V as above, then C,_;(P)
meets V in a non-empty divisor on ¥ for almost every P€C. (Indeed, this is simply the
assertion that given any k-dimensional family of divisors on C, almost every P€C is
contained in some but not all of the divisors in the family.) Therefore, for k generic points
Py, ..., P €C, the intersection

Cna(PN N O (PN T

is a finite non-empty set. Since £*- V is the degree of the corresponding intersection cycle,
the positivity of {*-V follows. QE.D.

Alternatively, one could prove the lemma by observing that if w: C™—C,, is the map
to C,, from the Cartesian product of C with itself m times, then w*OQ(C,,_;) = @ 1707 Oc(Py),
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where z,;; C™—(' is projection onto the ith factor. Thus w*(Q(C,,_,) is ample. But since
w: C"—C,, is finite and surjective, the ampleness of O(C,_,) is equivalent to that of
w*O(Crp_y)-

Finally, for the convenience of the reader, we sketch a proof of (2.6). Let

u C,—>J

be the Abel map, which takes a divisor D of degree m to the divisor class of D—mP,.
We first show that there is-a morphism v: C,,—P(#,,), compatible with projections to .J,

such that
Om XP(Em)P(Em—l) = Om—l'

To this end, let D,<C, xC be the universal divisor of degree m: D,,={(D, P)|P€D}.
Bearing in mind the chosen normalization of L, it follows from the universal property of
J that

(u x1)*(L®g*(mPy)) = O(Dp) @2 Oc,( — COny)s

where p”: C,, x C—C, denotes the projection. Since taking the direct image of L&g*O (mPy)

on J commutes with base-change, one then has
P+0(D,)® O —Cpy) = u* By,

Now the canonical section of O(D,,) gives rise to a nowhere vanishing section of p+0(Dj,),

and so one obtains an inclusion
O(-Cyy) =w*E,

of vector bundles on C,,. But this is equivalent to giving a morphism v: C,,—~P(F,,) over J
such that v~}P(E,_,))=C,_;. Note next that v is bijective. Indeed, it suffices to check
this fibre by fibre over J, where it is clear. Then since P(#,,) is smooth, it follows that v
is an isomorphism. (In positive characteristic, one would observe in addition that since
O <p@yP(EB, 1) =C)_, is smooth, v must be separable.) Q.E.D.

Remark 2.8. The proof of Lemma 2.2 works for curves over an arbitrary algebraically
closed field. Granting the results of [4] and [5] in positive characteristic, and making use
of Remark 1.7, one deduces that Theorem 2.3 and Corollary 2.4 are also valid in arbitrary

characteristic.
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