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Introduction

Let X be a smooth complex projective variety of dimension n, and let A be an
ample line bundle on X . Fujita has conjectured that the adjoint bundle OX(KX+mA)
is basepoint-free if m ≥ n + 1 and very ample if m ≥ n + 2. These conjectures and
related questions have attracted considerable attention in recent years because they
would extend to varieties of arbitrary dimension the most elementary facts about linear
series on curves.

In the seminal paper [De1], Demailly drew on deep analytic tools to make the first
serious attack on Fujita’s conjectures. More generally, starting with a nef line bundle
L, Demailly gives numerical and geometric positivity conditions on L to guarantee that
the adjoint linear series |KX + L| be free or very ample or separate any given number
of points and jets. He deduces for example that if A is ample, then OX(2KX +12nnA)
is very ample. While the numbers are rather far from Fujita’s predictions, this was the
first effective criterion for very ampleness, and it represented a real breakthrough.

Starting with [EL1], it soon became clear that one could also obtain effective (and
eventually stronger) results using algebraic methods. Specifically, in [EL1], [Kol1],
[Siu1], [Siu2] [De2] and most recently in [AS] (as explained and extended by Kollár
[Kol2]), the cohomological ideas pioneered by Kawamata, Reid, Shokurov and others
in connection with the minimal model program are applied to obtain effective results on
adjoint and pluricanonical linear series. It seems fair to say that by now it is relatively
quick to obtain many of the statements occuring in [De1].

But if recent work has largely superceeded many of the specific results of [De1],
the geometric ideas underlying that paper remain exceedingly interesting, and they
are likely to have other applications in the future. However the apparently analytic
nature of Demailly’s techniques have limited their defusion in the algebro-geometric
community. Our purpose here is to explain in algebro-geometric language the geometric
underpinnings of [De1], and to develop algebro-geometric analogues of some of the
analytic parts of Demailly’s argument.

One of the fascinating aspects of this story is that Demailly’s work is very close
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to some ideas that come up in diophantine approximation and transcendence theory.
Specifically, one can see the crucial self-intersection formula of [De1] as proving a very
refined and novel sort of zero estimate. This viewpoint has been very helpful in our
thinking about these matters, and we attempt to emphasize the connection here. We
also present a conjecture that would put the formula in question into the context of
contemporary intersection theory. Some related ideas are applied in a deformation
theoretic setting in the paper [EKL].

There is very little here for which we claim any real novelty. We offer these notes
in the spirit of pro bono work, in the hope that an explanation of the geometric ideas
of [De1] may be of some interest to algebraic geometers who – like us – are less than
fluent in the analytic language in which that paper is written. We hope that they may
contribute to the fruitful interchange that has developed between the algebraic and
analytic viewpoints on these matters. The application to adjoint series that we give is
slightly weaker than Demailly’s because we were unable to prove in general a certain
inequality on the self-intersection of the moving part of a linear series. We circumvent
this problem with a hyperplane section argument, but this leads to a slight degrading
of the numbers. Since the bulk of these notes were written, we have learned that Fujita
has proven the general case of the inequality in question in his very interesting note
[Fuj] (apparently also motivated by understanding [De1] algebro-geometrically). This
means one could give an algebraic proof of the the full statements of [De1]. But since
it is in any event the methods rather than the specific results that are of interest here,
we have decided not to incorporate Fujita’s theorem in our presentation. Finally, we
refer the reader to [Laz], §7, for an account of Demailly’s approach in the particularly
elementary and transparent two dimensional case, and to Demailly’s notes [De4] for an
overview of the analytic techniques.

We work throughout over the complex numbers C. If X is a projective variety,
and L is a line bundle on X , we write indifferently

∫

X c1(L)n, c1(L)n or simply Ln

for the top Chern number of L. However if V ⊂ X is a subvariety of dimension k, we
generally denote the degree

∫

V c1(L|V )k by the short-hand Lk · V . We trust that this
variable notation will not cause undue confusion.

We wish to thank F. Angelini and G. Fernandez del Busto for valuable discussions.
We are also grateful to the referee for suggesting several improvements and catching a
number of inaccuracies in an earlier version of these notes.

§1. Informal Overview of Strategy.

This section is devoted to an informal overview, in algebro-geometric language, of
the rough strategy of [De1]. Our hope is that an impression of the overall picture and
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main issues will render subsequent sections easier to absorb. We ignore here entirely
the problem of trying to weld together the various constants that appear in different
parts of the discussion. However we do state and prove some Lemmas in the generality
required for later use.

To set the stage, we start by describing the cohomological result on which the
whole approach depends. Let X be a smooth projective variety of dimension n, let
S ⊂ X be a finite set, and let L be an ample line bundle on X . Fix an integer s ≥ 0.

Theorem 1.1. Suppose there exists a divisor E ∈ |kL| satisfying the following prop-
erties:

(1.1.1). For every x ∈ S,multx(E) ≥ k(n+ s);

(1.1.2). There is an open neighborhood U ⊂ X of S such that

multy(E) < k for all y ∈ U − S.

Then
H1(X,OX(KX + L)⊗ Is+1

S ) = 0.

In particular, |KX + L| generates s-jets at every point of S, i.e. the evaluation map

H0(X,OX(KX + L)) −→
⊕

x∈S

H0(X,OX(KX + L)⊗OX/Is+1
x )

is surjective.

The Theorem is proved by applying vanishing for Q-divisors on a blow-up of X , or
analytically via multiplier ideals and Nadel’s Vanishing theorem. We refer to [EV2],
(7.5),(7.7) or [De2], (5.6) for details, or to [Laz], (6.4), for the particularly simple and
transparent case of surfaces. We will say that a divisor E ∈ |kL| has an almost isolated
singularity of index ≥ (n + s) along S if it satisfies the hypotheses (1.1.1) and (1.1.2)
of the Theorem.

Imagine now that we want to apply Theorem 1.1 to show that |KX +L| generates
s-jets at a given point x. Taking S = {x}, condition (1.1.1) is very easy to arrange. In
fact, by Riemann-Roch:

h0(X,OX(kL)) = Ln ·
kn

n!
+ o(kn).

On the other hand, it is
(

k(n+ s) + n

n

)

= (n+ s)n ·
kn

n!
+ o(kn)
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conditions to impose multiplicity > k(n+ s) at a given point. Therefore if

(1.2)

∫

X
c1(L)

n > (n+ s)n,

then for k ≫ 0 there exists a divisor E ∈ |kL| for which (1.1.1) holds.4 Note that (1.2)
will certainly be satisfied if for instance L = (n+ s+ 1)A for some ample bundle A.

The essential difficulty arises in trying to guarantee (1.1.2): how can one control
the singularities of a divisor E obtained by imposing high multiplicity at a given point?
A very similar problem comes up in many situations in diophantine approximation and
transcendence theory. Typically one constructs a polynomial (or section of a line
bundle) σ vanishing to high order at a some point, and the hard part is to show that
σ does not vanish identically, or to too high order at some other point.5 One line of
attack on these questions goes under the general heading of zero-estimates. We will
try to give a rough idea of the strategy in the present situation.

As a matter of notation, given a divisor E ∈ |kL|, define the index of E at a point
x ∈ X to be the “normalized multiplicity”:

indx(E) =
multx(E)

k
.

As we will work asymptotically with the linear series |kL| for k ≫ 0, this is the
convenient measure of singularity. For σ ∈ Q+, put

Zσ(E) = {x ∈ E | indx(E) ≥ σ} .

Thus Zσ(E) is a Zariski-closed subset of X . It carries a natural scheme structure,
locally defined by the vanishing of all partial derivatives of orders < kσ of a local
equation for E.

To explain the idea of the zero estimates, suppose that E ∈ |kL| is a divisor, and
x ∈ X is a point such that

indx(E) > α

for some rational α > 1, and assume that x is not an almost isolated singularity of E.
Then for elementary dimensional reasons, there must exist an irreducible subvariety

4We remark that it is already in the construction of E – or more precisely, a current T which
plays an analogous role – that Demailly’s approach begins to become analytic. His idea is to invoke
Yau’s solution of the Calabi conjecture to produce a sequence of metrics on L with a given amount of
mass concentrated closer and closer to the finite set S. Then he passes to a limit to produce T .

5Schmidt’s notes [Sch] contain a very nice overview of how these different steps come into the
proof of Roth’s theorem.
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V ⊂ X of positive dimension passing through x such that the index of E “jumps” by
at least 1

n along V . More precisely, V is an irreducible component of both Zσ(E) and
Zσ+(1/n)(E) for suitable σ, so that E has index ≥ σ + 1

n along V , but there exists an
open set U ⊂ X meeting V such that E has index < σ on U − V . This is a typical
“gap” argument which we shall formalize and prove in Lemma 1.5 below.

At this point there are two possibilities. If E has an almost isolated singularity
of index > α at x, then we are in a position to apply Theorem 1.1. Alternatively, we
can find a positive dimensional “multiplicity jumping” subvariety V ∋ x as above. In
classical situations – e.g. when X = Pn – one obtains in the latter case an absolute
upper bound on the degree of V :

Proposition 1.3. Let X = Pn and L = OPn(1), and fix ϵ > 0. Then there is a
constant C = C(n, ϵ) depending only on n and ϵ with the following property. Suppose
that

E ∈ |kL| (k ≫ 0)

is a hypersurface of degree k, and V ⊂ E is an irreducible component of both Zσ(E)
and Zσ+ϵ(E) for some σ > 0. Then

deg(V ) ≤ C.

One may view Proposition 1.3 as the “one-factor” case of the Faltings Product Theorem
[Falt], Theorem 3.1, and we will give the elementary proof shortly.

Now return to an arbitrary smooth projective variety X , and imagine – which
unfortunately is not true – that one had an analogous statement for the jumping locus
V associated to a divisor E ∈ |kL| on X . Consider as before a divisor E with index
> α a given point x ∈ X . Then if E does not have an almost isolated singularity
at x, the gap argument and the imaginary extension of Proposition 1.3 would yield a
positive dimensional subvariety V ⊂ X of bounded degree with respect to L. On the
other hand, since we are interested in very positive line bundles L — e.g. L = mA for
A ample and large m — we are free to assume that there are no subvarieties of small
degree with respect to L. So we would have a mechanism to guarantee the presence of
an almost isolated singularity, and we would be done!

In a word, the basic strategy will be to develop an appropriate extension of Propo-
sition 1.3. In order to understand the issues involved, let us recall the

Proof of Proposition 1.3. Let c = codim(V,Pn), and denote by

F ∈ H0(Pn,OPn(k))
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the equation defining E. Then Zσ(E) is cut out by homogeneous polynomials of de-
grees ≤ k, to wit all the partial derivatives {D(F )} of F of order less than σk in the
homogeneous coordinates on Pn. Therefore V is generically cut out by the {D(F )}.
On the other hand, being also a component of Zσ+ϵ(E), V is contained in the common
zeroes of all the partial derivatives {D′(F )} for D′ of order < (σ + ϵ)k. In particular,
each of the [σk]th partials D(F ) must vanish to order ≥ [ϵk] along V . In other words,
V is an irreducible component of the common zeroes of a collection of hypersurfaces
of degrees ≤ k, each of which vanishes to order ≥ kα along V , where α = [kϵ]

k ∼ ϵ.
Lemma 1.4 below then shows that

(kα)c · deg(V ) ≤ kc.

The Proposition follows. !

Lemma 1.4. [Compare [Falt], Thm.3.1 and [Fult],12.4] Let X be a smooth projective
variety of dimension n, and let M be an ample line bundle on X. Assume given a
collection

s1, . . . , sN ∈ Γ(X,M)

of sections of M whose common zeroes contain a codimension c subvariety V ⊂ X as
an irreducible component. Suppose moreover that each si vanishes to order ≥ a along
V . Then for any ample line bundle L,

degL(V ) ≤
(M c · Ln−c)

ac
.

Proof. After possibly replacing each si by a linear combination of the sections in ques-
tion, we can assume that V is an irreducible component of the zero locus Z = {s1 =
s2 = . . . = sc = 0}. Let Ei ⊂ X be the divisor of si. According to the general theory
of [Fult], the intersection product E1 ·E2 · . . . ·Ec = (M c) ∈ Ac(X) can be decomposed
into a sum of classes γj ∈ Ac(X) coming from various “distinguished subvarieties” of
E1 ∩ · · · ∩ Ec determined by intersecting the regular embedding

E1 × · · ·×Ec ⊂ X × · · ·×X

with the small diagonal X ⊂ X × · · · × X . Since the Ei intersect properly along V ,
V itself appears as one of these components, and since multV (Ei) ≥ a, the cycle [V ]
occurs with coefficient ≥ ac in the decomposition (cf. [Fult], (12.4.8)). Hence

(Ln−c ·M c) = ac · degL(V ) +
∑

′ degL(γj),
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where the sum on the right is taken over all the distinguished components other than
V . Therefore it is enough to show that degL(γj) ≥ 0. But this follows from [FL] (cf.
[Fult], (12.2)) since the restriction to X of the normal bundle NE1×···×Ec/X×···×X is
ample, and hence nef. !

Remark. The Lemma and proof remain valid assuming only that M is nef. Faltings
[Falt] (Proposition 2.3) gives an elmentary proof in the case X = Pn which avoids most
of the intersection theory quoted here.

Looking over the proof of Proposition 1.3, one sees that the first essential point
about working on Pn is that one is able to differentiate homogeneous polynomials. In
fact, a similar argument works on an arbitrary smooth projective variety X provided
that one controls the positivity of the tangent bundle TX of X . The next section is
devoted to this rather direct extension of Proposition 1.3 to general X . However the
resulting statement (Theorem 2.1) contains a factor of

∫

X c1(L)n on the right hand side,
so one does not directly get an absolute upper bound on the degree of the multiplicity-
jumping locus V . The most interesting part of the approach — and this is where
Demailly’s argument becomes essentially analytic — starts with the observation that
the number of degrees of freedom in choosing a divisor E satisfying (1.1.1) grows with
∫

X c1(L)n. So for the application to adjoint linear series, one will want to apply (1.3)
or (2.1) to the general divisor E in a rather large linear series. Motivated by some hints
in [De1], (11.1), we develop in §3 some machinery for obtaining in effect a bound on
the degree of the jumping locus V that takes into account the dimension of the linear
series in which E moves. We give the application of this “zero-estimate with moving
parts” (Theorem 3.9) in the spirit of [De1] to adjoint series in §4.

We conclude this section with a formulation and proof of the “gap” lemma that
was used above:

Lemma 1.5. Let X be a smooth irreducible variety of dimension n, and let E ∈ |kL|
be a divisor on X with indx(E) > α for some x ∈ X. Choose rational numbers

0 = β1 ≤ β2 ≤ . . . ≤ βn ≤ βn+1 = α,

and set

Z0 = X, Zj = Zβj
(E) =

{

x ∈ E
∣

∣ indx(E) ≥ βj
}

(1 ≤ j ≤ n+ 1),

so that Z1 = E. Then for at least one index 1 ≤ i ≤ n, there exists a subvariety V ⊂ X
passing through x which is an irreducible component of both Zi and Zi+1.



8

Thus indy(E) ≥ βi+1 for every y ∈ V , while there exists an open set U ⊂ X meeting
V such that indw(E) < βi for all w ∈ U − V . In other words, the index of E “jumps”
by at least (βi+1 − βi) along V . For example, assuming α > 1 and taking

βn+1 = α, βn =

(

n− 1

n

)

, . . . , β2 =

(

1

n

)

, β1 = 0,

we deduce the fact stated above that if x is not an almost isolated singularity of E of
index > α then for some σ, Zσ(E) and Zσ+(1/n)(E) share an irreducible component of
positive dimension.

Proof of Lemma 1.5. The sets Zj lie in a chain

Zn+1 ⊆ Zn ⊆ . . . ⊆ Z1 ⊆ Z0 = X.

Starting with Zn+1 and working up in dimension, we can choose irreducible components
Vj of Zj passing through x such that Vj+1 ⊆ Vj . So we arrive at a chain of irreducible
varieties:

(1.5.1) Vn+1 ⊆ Vn ⊆ . . . ⊆ V1 ⊆ V0 = X.

But since X is irreducible of dimension n, at least two consecutive links in the chain
must coincide, say Vi = Vi+1, and we take V = Vi. !

For later use, we record finally a variant:

Lemma 1.6. In the situation of Lemma 1.5, there exists an index c such that Zc and
Zc+1 share an irreducible component V having codimension c in X.

Sketch of Proof. Consider the chain (1.5.1) constructed in the proof of (1.5). It is
enough to prove the existence of an index c such that Vc = Vc+1 has codimension c,
and this is a purely combinatorial fact. In brief, let k be the largest index such that
Vk = Vk+1. Then Vk has dimension ≥ n−k, and if equality holds we can choose c = k.
If dimVk > n− k, then in the chain

Vk = Vk+1 ⊆ . . . ⊆ V1 ⊆ V0 = X

there are again two consecutive members that concide, and we can apply a suitable
inductive statement. We leave details to the reader. !

§2. Derivatives and the Self-Intersection Inequality.
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By way of warm-up for §3, we prove in this section a simple special case of De-
mailly’s self-intersection inequality [De1], (10.7), (10.8), [De3]. The result in question
gives a first generalization of Proposition 1.3 to arbitrary smooth projective varieties,
and — while elementary — it is already interesting from the standpoint of enumera-
tive geometry.6 Our impression is that even this clasically oriented part of Demailly’s
theorem isn’t well known in the algebro-geometric community, so we felt it worthwhile
to write out a proof here (which differs only in language from [De1]). The argument
follows closely the model of Proposition 1.3, the main new point being that now one
has to keep track of the positivity of the tangent bundle in order to make sense of
differentiating sections of a line bundle. It is natural to expect that one should also be
able to give a proof of Theorem 2.1 based on the general machinery of contemporary
intersection theory. This leads us to formulate a conjecture of a local nature concerning
normal cones associated to hypersurfaces. We present this conjecture at the end of the
section, and we hope it may be of some interest to intersection theorists.

We start with some formalism concerning vector bundles and Q-divisors. Let E
be a vector bundle on a smooth projective variety X , and let A be a Q-divisor on X ,
or more generally an element of Pic(X)⊗Q. As in [Myk], it will be convenient to deal
with formal expressions of the form E(A), which we think of as the “Q-vector bundle”
resulting from twisting E by A. We will want to discuss in particular the positivity
of such objects, and this reduces in the usual way to statements about positivity of
Q-divisors (whose meaning is clear). Specifically, we say that E(A) is ample if the
Q-divisor class

c1(OP(E))(1) + π∗A ∈ NS(P(E))⊗Q

is ample on the projectivization π : P(E) −→ X . Most of the elementary formal
properties of ample vector bundles hold in this context. For example, if E(A) is ample,
then so too is Symℓ(E)(ℓA). Or again, given an exact sequence 0 −→ E′ −→ E −→
E′′ −→ 0 of vector bundles, if E′(A) and E′′(A) are ample, then E(A) is ample.
These (and similar asertions) are most easily proved by taking a finite flat covering
f : Y −→ X such that f∗A is (numerically equivalent to) a genuine line bundle,
and reducing to the analogous statements for ample vector bundles on Y . Nefness
of E(A) is defined similarly, and in fact for nefness there is no difficulty in allowing
A ∈ Pic(X)⊗R.

Our goal now is to prove the following version of Demailly’s self-intersection in-
equality. We keep the notation of §1 concerning the index of a divisor and the corre-
sponding multiplicity loci.

6We stress however that the statement here ignores the most interesting and subtle part of
Demailly’s inequality, to wit the presence of a contribution from the absolutely continuous part Tabc

of the current with which he works. The purpose of §3 will be to develop an algebro-geometric analogue
of this more delicate result.
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Theorem 2.1. ([De1], Cor. 10.8) Let X be a smooth projective variety of dimension
n, let L be an ample line bundle on X, and assume that δ ≥ 0 is a real number such that
the twisted tangent bundle TX(δL) is nef. Given rational numbers ϵ, σ > 0, suppose
that

E ∈ |kL|

is a divisor containing a subvariety V , of codimension c in X, such that V is an
irreducible component of both Zσ(E) and Zσ+ϵ(E). Then

degL(V ) ≤
(1 + σδ)c

ϵc

∫

X
c1(L)

n.

Observe that when X = Pn one can take δ = 0, and the statement reduces to Propo-
sition 1.3. As in the proof of that Proposition, the essential point is to study the
equations defining various multiplicity loci of E. So we start with some remarks about
differentiating sections of a line bundle.

Let B be any line bundle on the smooth projective variety X . Recall that there
are so-called bundles of principal parts P ℓ

B associated to B: the fibre of P ℓ
B at a given

point x ∈ X is the space B⊗OX/Iℓ+1
x of ℓ-jets at x of sections of B. These jet bundles

are connected by exact sequences:

(2.2) 0 −→ Symℓ(Ω1
X)⊗B −→ P ℓ

B −→ P ℓ−1
B −→ 0

and a basic fact is that any section φ ∈ Γ(X,B) lifts to a section jℓ(φ) ∈ Γ(X,P ℓ
B).

The vector bundle
Dℓ

B = Hom(P ℓ
B, B) = P̌ ℓ

B ⊗B

is then the sheaf of differential operators of order ≤ ℓ on B. They sit in exact sequences

(2.3) 0 −→ Dℓ−1
B −→ Dℓ

B −→ Symℓ(TX) −→ 0

dual to (2.2). A section φ ∈ Γ(X,B) determines a homomorphism of vector bundles

dℓ(φ) : D
ℓ
B −→ B

defined for example via the transpose of jℓ(φ). Locally, representing φ by a function
f , dℓ(φ) is just the map which takes a differential operator D to the function D(f). It
follows that dℓ(φ) is zero precisely at the locus where φ vanishes to order > ℓ. More
precisely, let E be the divisor of φ, and consider the multiplicity locus

Σℓ = Σℓ(E) =
{

x ∈ X
∣

∣ multx(E) > ℓ
}

,

with its natural scheme structure. Then the image of dℓ(φ) is just the ideal sheaf of
this scheme, i.e. one has a surjective sheaf homomorphism:

(2.4.) Dℓ
B −→ B ⊗ IΣℓ

Now suppose that A ∈ Pic(X) ⊗ Q is an ample Q-line bundle such that the
Q-vector bundle TX(A) is ample.



11

Lemma 2.5. If ℓ is any sufficiently large and divisible integer such that ℓA is a genuine
line bundle (i.e. integral), then

Dℓ
B ⊗OX(ℓA)

is globally generated for all line bundles B.

Proof. Let H be a fixed very ample divisor on X . We shall show that if ℓ is any
sufficiently large and divisble integer Dℓ

B ⊗OX(ℓA) is a 0-regular sheaf with respect to
OX(H). It is well known that such a 0-regular sheaf is generated by its global sections.
First we will show that there is an integer ℓ0 such that for all integers ℓ ≥ ℓ0, the
sheaves SymℓTX ⊗OX(kA) are 0-regular with respect to H, for all k such that k ≥ ℓ
and kA is a genuine line bundle. This means we will need to show that

Hi(SymℓTX ⊗OX(kA)⊗OX(−iH)) = 0, for all i > 0.

Let π : P(TX) −→ X be the projectivization of TX . Then we observe that
(2.6)
Hi(SymℓTX⊗OX(kA−iH)) = Hi(KP(TX)⊗OP(TX)(ℓ)⊗π∗OX(kA−iH)⊗K−1

P(TX)).

Since OP(TX)(1) ⊗ π∗A is ample, we see that for sufficiently large ℓ0 the cohomology
groups in (2.6) vanish if ℓ ≥ ℓ0, k ≥ ℓ and kA is a geniune line bundle by Kodaira’s
theorem. By Serre vanishing theorem, we can find an integer ℓ1 such that for all k ≥ ℓ1
the sheaves SymjTX ⊗ OX(kA) are 0-regular when kA is a genuine line bundle, and
j = 0, 1, ..., ℓ0. By (2.3), we see that Dℓ

B ⊗OX(kA) is 0-regular if ℓ ≥ Max(ℓ0, ℓ1) and
k ≥ ℓ. !

Suppose now given as above a divisor E ∈ |B|. Then for sufficiently large and
divisible ℓ one has a surjective map of sheaves

Dℓ
B ⊗OX(ℓA) −→ OX(B + ℓA)⊗ IΣℓ

.

Therefore IΣℓ
(B + ℓA) is generated by its global sections. We will refer to sections in

the image of
H0(X,Dℓ

B ⊗OX(ℓA)) −→ H0(X,OX(B + ℓA))

as differential sections of order ℓ since they arise by a process of differentiation. For
instance suppose X = Pn, L = OPn(1) and B = OPn(k). Then Dℓ

B = ⊕OPn(ℓ). We
can take δ = −1 and then the differential sections are exactly the partial derivatives of
order ℓ of the homogeneous polynomial defining E.

Now we give the

Proof of Theorem 2.1. We can increase δ slightly and assume that δ ∈ Q, and that
TX(δL) is ample, for then the general statement of the Theorem follows by passing to
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the limit in δ. Similarly, we may decrease ϵ slightly, so we may assume that multV (E) >
k(σ+ ϵ). Note also that it suffices to prove the theorem for aE ∈ |akL| for any positive
a ∈ Z. Set

ℓ =def σk , m =def ϵk.

Replacing k by ak where a is suffiently divisble, we may assume that ℓ, m and ℓδ
are all positive integers. Futhermore, by (2.5) we may assume that Dℓ

kL ⊗ OX(ℓδL)
is generated by its sections. The hypothesis then is that V is a common irreducible
component of the two multiplicity loci Σℓ−1 = Σℓ−1(E) and Σm+ℓ = Σm+ℓ(E).

We claim first that

(*) IΣl
⊆ I(m)

V ,

where I(m)
V denotes the symbolic power sheaf of all functions vanishing to order ≥ m

on V . This follows from the hypothesis on V just as in (1.3). In fact, let f be a local
equation for E on some open set U . Then IΣl

is locally generated by all the functions
{D(f)} for D ∈ Dℓ(U) a differential operator of order ≤ ℓ. On the other hand, since V
is an irreducible component of Σℓ+m, D′(F ) ∈ IV (U) for every D′ ∈ Dℓ+m(U). Hence
all the D(f) (D ∈ Dℓ) vanish to order ≥ m on V , as asserted.

We now apply the discussion following the statement of Theorem 2.1 with B = kL
and A = δL. The sheaf IΣℓ

is generated by finitely many differential sections of order
ℓ:

s1, . . . , sN ∈ Γ(X,OX(kL+ ℓδL)).

In particular, the si cut out Σℓ as a set, and hence contain V as an irreducible compo-
nent of their common zeroes. On the other hand, by (*), the si vanish to order ≥ m
on V. Then Lemma 1.4 implies that

degL(V ) ≤
((k + ℓδ)L)c

(m)c
· Ln−c

=
(k + ℓδ)c

mc

∫

X
c1(L)

n

=
(1 + σδ)c

ϵc

∫

X
c1(L)

n.

The theorem follows. !

Remark 2.7. F. Angelini has verified that a similar argument proves the following
more precise statement of [De1], Cor. 10.8. Given a divisor E ∈ |kL| and a subvariety
V ⊂ X , define the jumping values b1, . . . , bn+1 of E with respect to V to be the integers

bp = bp(E) = min
{

µ > 0
∣

∣ codimx(Σµ(E), X) ≥ p ∀x ∈ V
}

.
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Thus
0 = b1 ≤ b2 ≤ . . . ≤ bn+1 = max

x∈V
multx(E).

For each 1 ≤ p ≤ n let {Tp,α} be the irreducible components of Σbp(E) meeting V , and
denote by νp,α the generic multiplicity of E along Tp,α. Then

(2.7.1)
∞
∑

α=1

(νp,α−b1) · . . . ·(νp,α−bp) ·degL(Tp,α) ≤ (k+b1δ) · . . . ·(k+bpδ) ·

∫

X
c1(L)

n.

The idea, roughly speaking, is to argue as above but using differential sections of orders
b1, . . . , bp.

As a particularly interesting example, due also to Angelini, let (X,OX(Θ)) be a
principally polarized abelian variety of dimenion n, with Θ ⊂ X the theta divisor on X .
Kollár has shown that codimΣp(Θ) ≥ p+1, and so in particular Θ has no (n+1)-fold
points. Suppose that Θ has an n-fold point at x, and consider the jumping numbers
with respect to {x}. By Kollár’s theorem,

bi ≤ i− 1 (1 ≤ i ≤ n).

Applying (2.7.1) with p = n we find:

(n− b1) · . . . · (n− bn) ≤

∫

X
c1(L)

n = n!.

Therefore bi = i−1 for all i. Let {Tα} be the irreducible components of Σn−2. Applying
(2.7.1) with p = n−1 then gives

∑

deg Tα ≤ n. If ∪Tα generatesX , then it follows from
the Matsusaka-Ran criterion that X is a Jacobian, in which case it is easy to see that
in fact (X,OX(Θ)) must split as a product of elliptic curves. This proves for example
that if X is simple, then Θ can have no n-fold points. By a similar sort of argument,
Smith and Varley [SV] have recently established that the presence of an n-fold point
implies in general that (X,OX(Θ)) is a product of elliptic curves, the additional point
being to show that Σn−2 generates X .

We conclude this section with a conjecture suggesting how Theorem 2.1 should
fit into the framework of contemporary intersection theory, as in [Fult]. Let X be
any smooth irreducible variety of dimension n, and let E ⊂ X be any effective divi-
sor on X . Suppose that V ⊂ X is an irreducible subvariety of codimension c in X
which is simultaneously an irreducible component of the two multiplicity loci Σℓ(E)
and Σℓ+m(E). Our conjecture asserts roughly speaking that [V ] always occurs with
multiplicity at least mc as a distinguished component of the Fulton-MacPherson c-fold
self-intersection class of E in X .
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More precisely, consider the c-fold products

Ec = E × · · ·× E ⊂ X × · · ·×X = Xc.

Let C = NC(E,Ec) denote the (affine) normal cone to the diagonal embedding E ⊂
Ec, so that C has pure dimension c(n − 1). Similarly, let T = N(X,Xc) ∼= ⊕c−1TX
be the normal bundle to the diagonal X ⊂ Xc, with projection map p : T −→ X .
Then C ⊂ T , and the Fulton-MacPherson class E · . . . ·E (c times) is obtained roughly
speaking by intersecting [C] with the zero-section in T .

Conjecture 2.8. The inverse image p−1(V ) is an irreducible component of C, and
moreover [p−1(V )] appears with coefficient ≥ mc in the fundamental class [C].

One may view this as a local analogue of Theorem 2.1. The global statement should
then follow by using the results of [FL] to control the other contributions to E · . . . ·E
in terms of the nefness of the vector bundle T . One expects a similar statement in the
setting of (2.7), with the multiplicity of [p−1V ] being estimated in the spirit of (2.7.1).

§3. Graded Linear Series.

This section contains the main technical result of the paper, the self-intersection
theorem with moving parts (Theorem 3.9). This is an algebro-geometric analogue
of the corresponding inequality of Demailly. Although the techniques employed in
[De1] are largely analytic, the basic idea here is suggested by Demailly in the remark
following [De1] Corollary 10.8. The reader is also encouraged to compare this section
with the proof of Dyson’s Lemma by Esnault and Viehweg [EV1]. Although Esnault
and Viehweg ignore the moving part in the proof of their main theorem, they indicate
how to improve Dyson’s Lemma by accounting for the moving part in [EV1] §10. The
theorem of Esnault and Viehweg is revisited from this point of view in [Nak].

As suggested by the overview in §1, the main theorem will involve an “asymptotic”
analysis of a linear system defined by imposing an index condition on a complete linear
series |kL| for k ≫ 0. We start by introducing some formalism designed to facilitate
the discussion of such linear series.

Let X be a smooth projective variety and let L be an ample line bundle on X .
Consider the graded algebra

R =
∞
⊕

k=0

H0(OX(kL)).
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Suppose that
A ⊆ R

is a graded subalgebra; we will call A a graded linear series. For technical reasons, we
will often assume that Ak is nonzero for all sufficiently large k.

Example 3.1. (a). Let B be a big divisor such that L(−B) is effective. Then
⊕∞

k=0 H
0(OX(kB)) is a graded linear series.

(b). Let V be a subvariety of X and α a positive real number. Let

Ak =
{

s ∈ H0(OX(kL)) | multx(s) ≥ kα for all x ∈ V
}

and define

Aα(V,X) =
∞
⊕

k=0

Ak.

One checks that Aα(V,X) is a graded linear series and it is the primary example which
will appear in the sequel.

(c). Suppose Y ⊂ X is a smooth subvariety and let

RY =
∞
⊕

k=0

H0(OY (kL)).

Given a graded linear series A ⊂ R on X , let AY denote the restriction of A to Y .
Then it is easy to verify that AY ⊂ RY is a graded linear series.

Definition 3.2. Let A be a graded linear series and let

a(k) = dim(Ak) for k ≥ 0.

Define the degree of A by

ρ(A) = lim sup
k→∞

a(k)n!

kn
.

The invariant ρ(A) measures the moving part of the graded linear series A or equiva-
lently the degree of freedom in choosing a divisor Ek ∈ |Ak| for k ≫ 0.

Example 3.3. (a). ρ(R) = c1(L)n
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(b). Let x be a point of X . Then

ρ(Aα(x,X)) ≥ c1(L)
n − αn,

as one verifies by counting the number of linear conditions imposed by requiring mult-
plicity ≥ kα at x.

The next two lemmas demonstrate that the invariant ρ behaves well under such
operations as taking a Veronese subalgebra or restricting the graded linear series to a
hyperplane.

Lemma 3.4. Let A ⊂ R be a graded linear series such that Ak ̸= 0 for all k ≫ 0.
Fix a positive integer d and consider the Veronese subalgebra: Vd =

⊕∞
k=0 Akd ⊂

⊕∞
k=0 H

0(OX(kdL)). Then

(3.4.1) ρ(Vd) = dnρ(A).

Proof. It is clear from Definition 3.2 that ρ(Vd) ≤ dnρ(A). Let Vd(k) denote the kth

graded piece of Vd and let
vd(k) = dim Vd(k).

Write ρ = ρ(A). We will prove Lemma 3.4 by showing that for any ϵ > 0 there exists
a sequence of integers ki such that ki → ∞ and

vd(ki) ≥
(kid)n

n!
(ρ(1− ϵ)) for all i.

Fix a large positive integer c such that a(m) > 0 for all m ≥ c. It follows from the
definition of ρ that there exists an infinite increasing sequence of integers {mi} such
that

a(mi)n!

mn
i

≥ ρ
(

1−
ϵ

2

)

for all i.

Replacing {mi} by a subsequence if necesary, we may also assume that all the mi’s are
sufficiently large so that

(

mi

mi + c+ d

)n

≥ 1−
ϵ

2
.

Next observe that there is a unique integer bi such that mi+c < bi ≤ mi+c+d and bi is
divisible by d. We will write bi as kid. Since kid−mi > c it follows that there is a non-
zero section σ ∈ Akid−mi

. Multiplication by σ gives an injection Ami
↪→ Akid = Vd(ki)
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and consequently vd(ki) ≥ a(mi). Thus

vd(ki)n!

(kid)n
≥

a(mi)n!

mn
i

mn
i

(kid)n

≥ ρ
(

1−
ϵ

2

)(

1−
ϵ

2

)

≥ ρ(1− ϵ).

This completes the proof of Lemma 3.4. !

Next we investigate the behaviour of ρ under restriction to hyperplanes. For this
we focus only on graded linear series of the form Aα(V,X).

Lemma 3.5. Let A = Aα(V,X) be the graded linear series defined in 3.1(b). Suppose
that |m0L| is free and choose a general divisor H ∈ |m0L|. Set W = V ∩H. Then

ρ(Aα(W,H)) ≥ m0ρ(A).

Proof. As above, put

RH =
⊕

k

H0(OH(kL)).

Let B = BH ⊂ RH be the restriction of A to H (cf. Example 3.1 (c)). There is a
natural surjective map A −→ B and we denote the kernel by C. Thus for all k ≥ 0
there is an exact sequence

0 −→ Ck −→ Ak −→ Bk −→ 0.

Let a(k) = dimAk, b(k) = dimBk, and c(k) = dimCk. Observe that B ⊂ Aα(W,H).
In order to prove Lemma 3.5, it will be sufficent to show that

(3.5.1) ρ(B) = lim sup
k→∞

b(k)(n− 1)!

kn−1
≥ m0ρ(A).

Let s0 be the section of m0L defining H. It follows from the definition of Ck

that every t ∈ Ck can be expressed as t = s0s′ with s′ ∈ H0(X,OX((k − m0)L)).
Furthermore, since H is general, we can assume that it does not contain any irreducible
component of V and hence

multx(s
′) ≥ kα for all x ∈ V.
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Let
C′

k = {s ∈ H0(X,OX((k −m0)L)) | multx(s) ≥ kα for all x ∈ V }.

The above remarks show that there is an injection Ck ↪→ C′
k. Since C′

k ⊂ Ak−m0
it

follows that c(k) ≤ a(k − m0) and hence b(k) ≥ a(k) − a(k − m0) for all k ≥ 0. In
particular, when k is divisible by m0, this yields

b(tm0) ≥ a(tm0)− a((t− 1)m0).

Summing the above inequalities, we obtain

N
∑

t=0

b(tm0) ≥ a(Nm0).

By Lemma 3.4

lim sup
N→∞

(

a(Nm0)n!

(Nm0)n

)

= ρ(A).

Hence Lemma 3.5 follows from the following simple lemma on partial sums:

Lemma 3.6. Let g(k) be a sequence of real numbers. Let f(N) =
∑N

j=0 g(j) and

suppose that lim supk (f(k)/k
n) = ρ. Then lim supk

(

g(k)/kn−1
)

≥ nρ.

Proof. Suppose Lemma 3.6 is false. Then there exists a real number ϵ > 0 and a
positive integer N0 > 0 such that g(j)/jn−1 ≤ nρ− ϵ for all j ≥ N0. Then for k ≫ 0

f(k) =
k

∑

j=0

g(j) ≤ (nρ− ϵ)
kn

n
+ o(kn−1)

which contradicts our assumption on f(k). !

Applying Lemma 3.5 inductively gives

Corollary 3.7. Let V ⊂ X and α be as in Lemma 3.5. Suppose that |m0L| is free and
that Λ is a complete intersection of n − c general divisors in |m0L|. Let S = Λ ∩ V .
Then

ρ(Aα(S,Λ)) ≥ mn−c
0 ρ(Aα(V,X)). !

Let

A =
∞
⊕

k=0

Ak ⊆
∞
⊕

k=0

H0(X, kL)
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be a graded linear series and choose for each k a general divisor Ek ∈ |Ak|. For any
rational number σ > 0 define

Zσ(k) = {x ∈ X | multx(Ek) ≥ kσ}.

The following lemma shows that these loci stabilize for k ≫ 0.

Lemma 3.8. There is a positive integer k0 such that

Zσ(k1) = Zσ(k2) for all k1, k2 ≥ k0.

Proof of Lemma 3.8. As σ is fixed in Lemma 3.8, we will write Z(k) for Zσ(k) in
order to alleviate notation. Suppose a ≥ 2 is a positive integer. We claim that there
exists a positive integer k(a) such that

(3.8.1) Z(c) ⊆ Z(a) whenever c ≥ k(a).

To prove the claim, suppose that x ̸∈ Z(a) so that there exists η > 0 satisfying

multx(Ea) ≤ aσ − η.

Note that since the index is a discrete invariant, η is bounded below independly of x;
in fact if mσ ∈ Z then η ≥ 1/m. Suppose b is a positive integer relatively prime to a.
Then any integer c ≥ ab can be expressed as

c = αa+ βb, α, β ∈ Z and 0 ≤ β ≤ a.

Consider the divisor
Fc = αEa + βEb ∈ |Ac|.

Then
multx(Fc) = α ·multx(Ea) + β ·multx(Eb)

≤ αaσ − αη + β ·multx(Eb)

≤ c

⎛

⎝σ −
η
(

1− βb
c

)

a
+

β ·multx(Eb)

c

⎞

⎠ .

Since η, β, and b are bounded independent of c, it follows that multx(Fc) < cσ for c ≫ 0.
On the other hand, if Ec ∈ |Ac| is a general divisor, then multx(Ec) ≤ multx(Fc). Hence
x ̸∈ Z(c) for all sufficiently large c as claimed.
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If Z(c) = Z(a) for all c ≫ 0 then we are finished. If not, then by (3.8.1) there
exists a′ > 0 such that Z(a′) ! Z(a). The argument of (3.8.1) can then be repeated
with a′ in place of a. This process cannot go on indefinitely and this establishes Lemma
3.8. !

Using Lemma 3.8 we can define a subvariety Zσ(A) ⊂ X by

Zσ(A) = Zσ(k) for k ≫ 0.

The main result of this section is the “one factor” product theorem with moving parts:

Theorem 3.9. Let X be a smooth projective variety of dimension n. Let L be an
ample line bundle on X and assume that δ is a non-negative real number such that
TX(δL) is nef. Let

A ⊂
⊕

H0(OX(kL))

be a graded linear series. Suppose that there are rational numbers σ, ϵ > 0 and an
irreducible subvariety V ⊂ X of codimension c < n which is an irreducible component
of both Zσ(A) and Zσ+ϵ(A). Then

degL(V ) ≤

(

1 + σδ

ϵ

)c

(c1(L)
n − ρ(A)).

Proof of Theorem 3.9. As in the proof of Theorem 2.1, we may assume that TX(δL)
is ample and δ is rational by replacing δ with a slightly larger rational number. Fix
a sufficiently large and divisible integer k0 such that k0σ, k0ϵ, k0δσ, and k0ϵ/(1 + σδ)
are all integers. By Lemma 3.8, we may assume that for all k ≥ k0,

Zσ(A) = Zσ(Ak),

Zσ+ϵ(A) = Zσ+ϵ(Ak).

By Lemma 2.2, we may also assume that the sheaves Dkσ
kL ⊗OX(kδσL) are generated

by global sections for all k divisble by k0. Let sk ∈ Ak be a general section and Ek its
divisor of zeroes. If x /∈ Zσ(A) then multx(Ek) < kσ. Thus there exists a differential
operator

D ∈ H0
(

Dkσ
kL ⊗OX(kδσL)

)

such that the differential section D(sk) ∈ H0 (OX(k(1 + σδ)L)) does not vanish at x.
Furthermore, since the order of D is ≤ kσ,

multV (D(sk)) ≥ k(σ + ϵ)− kσ = kϵ.
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Since V is an irreducible component of Zσ(A), V is also an irreducible component of
the base locus of the linear system

∣

∣

∣
I(kϵ)
V ⊗OX(k(1 + δσ)L)

∣

∣

∣
for all k divisble by k0.

Letting α = ϵ/(1 + δσ), this shows that V is an irreducible component of |Aα(V,X)m|
for all m divisible by k0(1 + σδ). Lemma 3.10 below then implies that

(3.9.1) degL(V ) ≤
c1(L)n − ρ

αc
=

(

1 + σδ

ϵ

)c

(c1(L)
n − ρ(Aα(V,X))) .

But since α ≤ σ + ϵ and since V ⊂ Zσ+ϵ(A) it follows that

Ak ⊂ Aα(V,X)k for all k divisible by k0(1 + σδ).

Hence, using Lemma 3.4, deg(Aα(V,X)) ≥ ρ(A) = ρ; combining this with 3.9.1 com-
pletes the proof of Theorem 3.9. !

Lemma 3.10. Let V ⊂ X be an irreducible subvariety of codimension c < n and
let α be a positive real number. Let ρ = ρ(Aα(V,X)). Suppose that there is a positive
integer k0 such that V is an irreducible component of the base locus of the linear system
|Aα(V,X)k| for all k ≫ 0 divisible by k0. Then

degL(V ) ≤

(

1

α

)c

(c1(L)
n − ρ)

Proof.

Fix a positive integer m0 such that |m0L| is free of base points. Choose general
divisors D1 . . . , Dn−c ∈ |m0L| and let

Λ =
n−c
⋂

i=1

Di.

Also define
S = Λ ∩ V.

Since the divisors Di are general, S is a finite set of degm0L(V ) distinct points. The
hypotheses of Lemma 3.10 imply that for all k sufficiently large and divisible there is
a divisor Ek ∈ H0(Λ,O(kΛ)) with an almost isolated singularity at every point of S.
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The key observation in the proof of Lemma 3.10 is that Theorem 1.1 gives surjectivity
statements onto skyscraper sheaves and this provides a means of bounding the size of
S, or equivalently, of bounding degL(V ); the moving part ρ enters by considering the
kernel of these surjective maps.

We will show that

(3.10.1) card(S) ≤
mn−c

0

αc
(c1(L)

n − ρ).

It is clear, in light of fact that card(S) = degm0L(V ), that (3.10.1) implies Lemma
3.10. Choose two positive numbers α1, α2 slightly less than α, such that α1 < α2 < α.
Replacing k0 by a suitably high multiple, we may assume that V is an irreduible com-
ponent of the base locus of |Aα(V,X)d| for all d divisible by k0. Next fix a sufficiently
divisible positive integer k such that kα1, kα2, kα, kα2/k0α and k/k0 are all integers.
In order to apply Theorem 1.1, we also require k to be sufficiently large so that

(3.10.2) k
(

1−
α2

α

)

L−KΛ is ample on Λ

and

(3.10.3) k(α2 − α1) > c.

Choose a general divisor D ∈ |Aα(V,X)kα2/α| and let

DΛ = D ∩ Λ.

Since V is an irreducible component of the base locus of |Aα(V,X)kα2/α| and since D
is general, it follows that DΛ has isolated singularities along S. Moreover,

multS(DΛ) ≥ kα
α2

α
= kα2 > kα1 + c,

where the last inequality follows by (3.10.3). Applying Theorem 1.1 to DΛ gives

(3.10.4) H1

(

Ikα1

S ⊗O

(

KΛ +
kα2

α
L

))

= 0.

By (3.10.2), kL− (KΛ + kα2/αL) is ample. This, together with (3.10.4) implies that

H1
(

Ikα1

S ⊗OΛ(kL)
)

= 0.

Hence the following sequence is exact:
(3.10.5)

0 −→ H0
(

Ikα1

S ⊗OΛ(kL)
)

−→ H0(OΛ(kL)) −→ H0
(

OΛ(kL)/I
kα1

S

)

−→ 0.
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To prove (3.10.1) it remains to compute the dimension of the three terms in (3.10.5).
Since α1 ≤ α, dim(Aα1(S,Λ)k) ≥ dim(Aα(S,Λ)k)). Lemma 3.4 and Lemma 3.7 imply
that

lim sup
k0|k

dim(Aα1(S,Λ)k)
c!

kc
≥ mn−c

0 ρ.

By the Riemann-Roch theorem,

h0(OΛ(kL)) = mn−c
0 (c1(L)

n)
kc

c!
+O(kc−1).

Also

h0
(

OΛ(kL)/I
kα1

S

)

= card(S)
(kα1)c

c!
+O(kc−1).

We deduce from (3.10.5), that

card(S) ≤
(m0)n−c

(α1)c
(c1(L)

n − ρ).

As α1 approaches α we obtain the inequlaity (3.10.1) and this concludes the proof of
Lemma 3.10. !

§4. Application to Adjoint Series.

In this section, following [De1], we address the problem of producing sections of
|KX + L| for a suitably positive line bundle L. The logic of the argument is simple:
as outlined in §1, we choose a divisor Ek ∈ |kL| with very high multiplicity at a point
x ∈ X . If Ek has an almost isolated singularity of index n + s at x then Theorem
1.1 guarantees that |KX + L| separates s-jets at x. If the singularity of Ek at x is
not isolated, then Ek has large index along some positive dimensional subvariety V
containing x; the techniques developed in §3 will allow us to choose V in such a fashion
that there is an absolute upper bound for degL(V ). Thus if L is sufficiently positive to
rule out the latter case, |KX + L| must separate s-jets at x.

Theorem 4.1. Let X be a smooth projective variety of dimension n and fix a point
x ∈ X. Let L be an ample line bundle on X satisfying c1(L)n > (n+ s)n. Suppose that
δ is a non-negative real number such that TX(δL) is nef. Then either:

(a) the linear system |KX + L| separates s-jets at x, or

(b) there is a subvariety V of codimension c containing x such that

degL V ≤ (n− 1 + (c− 1)δ)c(n+ s)n.
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Proof. Fix a rational number α satisfying

(n+ s)n < αn < c1(L)
n.

Let A = Aα(x,X). Note that |Aα(x,X)k| ̸= 0 for all k ≫ 0 and by Example 3.3 (b),
ρ(A) ≥ c1(L)n − αn. For each k > 0 choose a general divisor Ek ∈ |Aα(x,X)|. Let

βj =
j − 1

n− 1
for 1 ≤ j ≤ n

and let βn+1 = α. Set Zj = Zβj
(A). By Lemma 1.6, there exists an irreducible

subvariety V of codimension c containing x which is a common irreducible component
of Zc and Zc+1. If c = n then for all k ≫ 0, Ek has an isolated singularity of index
≥ n + s at x and consequently Theorem 1.1 implies that |KX + L| separates s-jets
at x. So suppose that c < n. Theorem 3.9 applies in this situation with σ = c−1

n−1 ,
ϵ = 1/(n− 1), and ρ = c1(L)n − αn, giving

degL V ≤ (n− 1 + (c− 1)δ)cαn.

Letting α approach (n+ s) gives Theorem 4.1. !

Theorem 4.1 is similar to the main theorem of [De1] although the upper bound
for degL V is worse and there are no βi’s in the statement because (to simplify the
exposition) we chose explicit values in the proof. The weaker upper bound on degLV
stems from the fact that we passed to hyperplane sections in the proof of Theorem 3.9.
This could be avoided by using an interesting theorem of Fujita [Fuj], which would
allow one to recover Demailly’s statements in toto. However the basic idea is not much
different.

A negative feature of Theorem 4.1 is the dependence on the positivity of TX ;
Demailly removes this dependence through an iteration argument which we present
here. The argument allows one to prove a very ampleness criterion for line bundles of
the form 2KX +B where B is a suitably positive ample line bundle.

Proposition 4.2. Let X be a smooth projective variety dimension n and let B be an
ample line bundle on X. Assume that A = KX ⊗ B is also ample and that for all
subvarieties V of codimension c:

(4.2.1) degA(V ) > (n− 1 + (c− 1)(2n+ 1))c(n+ 1)n, 1 ≤ c ≤ n− 1.

Then KX + A = 2KX +B is very ample.
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Proof. We will use Theorem 4.1 to show the following inductive statement:

(4.2.2) If 2KX +2kB is very ample then 2KX +2k−1B is also very ample for k ≥ 1.

Since 2KX+2mB is very ample for sufficiently largem, (4.2.2) and descending induction
on m show that 2KX + B is very ample establishing Proposition 4.2. It remains to
show (4.2.2). It is well known that for any very ample line bundle L, TX(KX + nL)
is generated by its global sections. In particular, since 2KX + 2kB is very ample by
assumption, this implies that TX

(

KX + n(2KX + 2kB)
)

is nef. Hence we can apply
Theorem 4.1 with L = KX + 2k−1B and δ = (2n + 1). Since k − 1 ≥ 0, (4.2.1) rules
out case (b) of Theorem 4.1 and hence

∣

∣2KX + 2k−1B
∣

∣ separates 1-jets at every point
x ∈ X . Similarly, one can show that

∣

∣2KX + 2k−1B
∣

∣ separates any two distinct points
of X . Thus 2KX + 2k−1B is very ample and (4.4.2) is established.

Recall that KX + (n+ 1)L is nef for any ample line bundle L on X by a theorem
of Mori. Now the hypothesis (4.2.1) of Proposition 4.2 can of course be guaranteed by
choosing B = mL for an ample line bundle L and a suitably positive integer m:

Corollary 4.3. Let X be a smooth projective variety of dimension n and let L be an
ample line bundle on X. Then 2KX +mL is very ample for

m > n+ 1 + ((2n+ 2)(n− 1))n−1(n+ 1)n.

Finally we state without proof a variant of Theorem 4.1 which depends on the
positivity of KX rather than the positivity of TX .

Theorem 4.4. Let X be a smooth projective variety of dimension n and let L be an
ample line bundle on X satisfying c1(L)n > (n+ s)n. Let b be a non-negative number
such that −KX + bL is nef. Suppose that m0 is a positive integer such that |m0L| is
free. Then for any point x ∈ X either

(a). |KX + L| separates s-jets at x or

(b). There exists a codimension c subvariety V containing x and satisfying

degL V ≤

(

b+m0(n− c) +
n!

c!

)c

(n+ s)n.
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Remark 4.5. (a). We can make theorem 4.4 effective by using Kollár’s effective base
point free theorem. According to this result, |m0L| is base point free for

m0 = 2(n+ 2)!(n+ "b#).

(In some preliminary notes on (4.4) we overlooked the necessity to invoke Kollár’s
theorem at this point, and accordingly claimed a somewhat better result. We apologize
for any confusion that may have resulted from this error.)

(b). As Demailly pointed out, one can also deduce Theorem 4.4 from Theorem 4.1
and Corollary 4.3. Under the same assumption as in Theorem 4.4, we can apply 4.3 to
deduce that TX(δL) is nef, if δ > (2n+1)b+ n(n+1+ ((n− 1)(2n+2))n−1(n+1)n).
Now we can apply Theorem 4.1 to deduce a result similar to Theorem 4.4.
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