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Abstract
The Konno invariant of a projective variety X is the minimum geometric genus of the
fiber of a rational pencil on X . It was computed by Konno for surfaces in P3, and in
general can be viewed as a measure of the complexity of X . We estimate Konno(X)

for some natural classes of varieties, including sharp asymptotics for polarized K3
surfaces. In an appendix, we give a quick proof of a classical formula due to Deligne
and Hoskin for the colength of an integrally closed ideal on a surface.

Keywords Algebraic variety · Fibration · Geometric genus · Multiplicity of linear
series on surface
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1 Introduction

Let X be a smooth complex projective variety of dimension n � 2. We define the
Konno invariant of X to be the minimal geometric genus of a pencil of connected
divisors on X :

Konno(X) = min

{
g

∣∣∣ there exists a connected rational pencil π : X ��� P1

whose general fibre F has pg(F) = g

}
.

(The geometric genus of an irreducible projective variety is understood to be the pg of
any desingularization.) This invariant was introduced and studied by Konno [5], who
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The Konno invariant of some algebraic varieties 421

computed it for smooth surfaces in P3: he proves that in this case pencils of minimal
genus are given by projection from a line. In general, one should view Konno(X) as
one of many possible measures of the “complexity” of X . The purpose of this note is
to estimate this invariant for some natural classes of varieties.

Our first result involves the Konno invariant of varieties such as general complete
intersections whose Picard groups are generated by a very ample divisor.

Proposition A Assume that Pic(X) = Z · [H ] where H is a very ample divisor on X.
Then

h0(KX ) − h0(KX − H) � Konno(X) � h0(KX + H) − h0(KX ) + h1(KX ).

So for example if

Xd ⊆ Pn+1

is a hypersurface of degree d (very general if n = 2), then as a function of d

Konno(Xd) ∼ dn

n! .

Observe that at least when H1(KX ) = 0, the upper bound in Proposition A is the
geometric genus of a general pencil in |H |. However if h0(X , H) � n, then one
can construct special pencils of highly singular hypersurfaces of somewhat smaller
geometric genus.

Our second result deals with polarized K3 surfaces of large degree.

Theorem B Let (Sd , Ld) be a polarized K3 surface of genus d � 3, and assume that

Pic(Sd) = Z · [Ld ].

Then

Konno(Sd) ∈ �
(√

d
)
,

i.e. there are constants C1,C2 > 0 such that

C1 ·
√
d < Konno(Sd) < C2 ·

√
d

for all such surfaces Sd and all large d.

It is conjectured by Stapleton [8] that the same statement holds for the degree of
irrationality irr(Sd) of Sd , but this remains an intriguing open problem. An analogue
of Theorem B is also valid for general polarized abelian surfaces.1

1 Note Added in Proof: Nathan Chen has established the very interesting result that if Ad is a very
general abelian surface with a polarization of type (1, d), then the degree of irrationality of Ad is � 4. The
argument proceeds by showing the the Kummer variety of A admits a two-fold rational covering of P2.
Nonetheless, it seems to remain plausible that the degree of irrationality of a general K3 surface Sd goes to
infinity with d.
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422 L. Ein, R. Lazarsfeld

The proof of Proposition A occupies Sect. 2. It arises as a special case of a some-
what more general (but very elementary) result dealing with one-dimensional families
of hypersurfaces. Section 3 is devoted to a more refined lower bound for surfaces,
from which we deduce Theorem B; following [5], the key point here is to use some
classical statements of Noether computing the invariants of a linear series in terms of
its multiplicities at finite and infinitely near points. We conclude with an appendix in
which we review Noether’s formulae, and show in particular how they lead to quick
proofs of theorems of Deligne–Hoskin and Lech concerning finite colength ideals on
a surface.

2 Geometric genera of covering families of divisors

Let X be a smooth complex projective variety of dimension n.

Theorem 2.1 Let {Ft }t∈T be a family of divisors on X parametrized by a smooth curve
T . Assume that the Ft are generically irreducible and that they cover X, and denote
by F ⊆ X a general element in the family. Then

pg(F) � h0
(
X ,OX (KX )

) − h0
(
X ,OX (KX − F)

)
. (1)

Note that although we do not assume that the {Ft } are all linearly equivalent, the
expression on the right is independent of the choice of a generic element of the family.
Observe also that it can happen that equality holds in (1): for example one can take
X = C×F where C is an elliptic curve.

Proof We adapt the elementary argument proving [1, Theorem 1.10]. One can con-
struct a diagram:

Y

π

μ
X

T

where Y is smooth, and almost all fibres

Et =def π−1(t) ⊆ Y

are smooth irreducible divisors mapping birationally to their images Ft ⊆ X . Denote
by E a general fibre of π , with F = μ(E) ⊆ X . So by definition pg(F) =
h0(E,OE (KE )). Now

KY ≡lin μ∗KX + R,

where R is effective, and KE = KY |E . Therefore

pg(F) � h0
(
E, μ∗OX (KX )|E)

.
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On the other hand, μ∗ gives rise to a natural injection

H0(F,OF (KX )
)

↪→ H0(E,OE (μ∗KX )
)
,

so we arrive finally at the inequality

pg(F) � h0
(
F,OX (KX )|F)

.

The statement then follows by using the exact sequence

0 −→ OX (KX − F) −→ OX (KX ) −→ OF (KX ) −→ 0

to estimate h0(F,OF (KX )). 
�
Proof of Proposition A We apply the previous result with F ∈ |r H | for some r � 1.
The right hand side of (1) is minimized when r = 1, and the lower bound follows.
The upper bound follows by considering a general pencil in |H |. 
�
Remark 2.2 (Covering families of curves) By a similar argument, if {Ct }t∈T is a family
of irreducible curves of geometric genus g that covers a Zariski-open subset of X , then

(2g − 2) � (KX ·C), (2)

where C is a general curve in the family.

3 The Konno invariant of an algebraic surface

The inequality of Theorem 2.1 says nothing for varieties with trivial canonical bundle.
In the case of surfaces we prove here a variant that does yield non-trivial information
in this case. The approach is inspired by the arguments of Konno in [5].

Theorem 3.1 Let S be a smooth complex projective surface, and let L be an ample
line bundle on S. Fix a two-dimensional subspace V ⊆ H0(S, L) with only isolated
base-points defining a rational pencil

φ|V | : S ��� P1

with generically irreducible fibres. If g denotes the geometric genus of the general
fibre, then

(2g − 2) � (KS · L) +
√

(L2). (3)
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424 L. Ein, R. Lazarsfeld

Remark 3.2 Compare the bound appearing above in equation (2).

Proof By a sequence of blowings-up at points, we construct a resolution of the inde-
terminacies of |V |:

S′

π

μ
S .

P1

We can suppose that the centers of the blowings-up are the (actual and infinitely near)
base-points of |V |. Letmi denote the multiplicity of the proper transform of a general
curve C ∈ |V | at the i th base-point, and denote by C ′ proper transform of C in S′, so
that C ′ is a general fibre of π and g = g(C ′). Then by a classical theorem of Noether,
which we recall in the Appendix (Proposition A.1), one has

(C ·C)S = (C ′ ·C ′)S′ +
∑

m2
i ,

i.e.

(L2) =
∑

m2
i . (∗)

Furthermore,

(2pa(C) − 2) = (2g − 2) +
∑

mi (mi − 1).

But (2pa(C) − 2) = (KX + L) · L , so we find that

(2g − 2) = (L ·KX ) +
∑

mi .

The stated inequality (3) then follows from (∗) and the fact that
∑

xi �
√∑

x2i for
any non-negative real numbers xi . 
�
Proof of Theorem B Let (S, L) = (Sd , Ld) be a polarized K3 surface of genus d, so
that

(L2) = 2d − 2, h0(S, L) = d + 1.

We assume that Pic(S) = Z · [L], and consider a rational pencil

φ : S ��� P1

of curves of geometric genus g. Then for some r � 1, φ is defined by a two-dimen-
sional subspace V ⊆ H0(S, r L) with isolated base points. Theorem 3.1 implies that
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The Konno invariant of some algebraic varieties 425

2g − 2 � r ·√2d − 2 �
√
2d − 2,

so Konno(S) � C1 ·
√
d for suitable C1 > 0.

It remains to construct a pencil of small genus, for which we use an argument of
Stapleton [8]. Specifically, fix a point x ∈ S, and choose an integer m � 1 so that

(m + 2)2 � 2d � (m + 1)2. (∗∗)

It follows from (∗∗) that

(d + 1) − m(m + 1)

2
� 2,

and therefore

h0
(
S, L⊗ Imx

)
� 2.

All the curves in |L⊗ Imx | are reduced and irreducible, so we get a pencil of curves of
geometric genus g with

(2g − 2) � (2d − 2) − m(m − 1).

But 2d − m2 � 4m + 4 thanks to (∗∗), and one then finds that (2g − 2) � 3 ·√2d.
Thus we have constructed a pencil of geometric genus � C2 ·√d for suitable C2, as
required. 
�
Remark 3.3 (Abelian surfaces) Let A be an abelian surface with a polarization of type
(1, d) that generates the Néron–Severi group of A. Then essentially the same argument
shows that

Konno(A) ∈ �(d).

Remark 3.4 (Non-linear families of curves on K3 surfaces) One can view Theorem B
as asserting there are no lines

P1 ⊆ |Ld |

contained in the locus of curves having small geometric genus. It would be interesting
to knowwhether one can also rule out the presence of rational curves of higher degree.
For example, a general polarized K3 surface (S, Ld) contains a (non-compact) two-
dimensional family of nodal curves of geometric genus pg = 2. Does this surface
contain any rational curves? More generally, do the Severi varieties parametrizing
nodal curves of small geometric genus in |Ld | exhibit hyperbolic tendencies?
Remark 3.5 (Calabi–Yau or hyper-Kähler manifolds) Can one establish non-trivial
lower bounds on the Konno invariant of a Calabi–Yau or hyper-Kähler manifold?
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Appendix A. Noether’s formulas for linear series on surfaces

We quickly review Noether’s classical approach to invariants of linear series on sur-
faces, upon which the proof of Theorem 3.1 was based. Besides accommodating the
convenience of the reader, our motivation is to show how these ideas lead to quick
proofs of results of Deligne–Hoskin and Lech.

Let S be a smooth projective surface, L a line bundle on S, and V ⊆ H0(S, L) a
vector space of dimension � 2 defining a linear series with only isolated base-points.
Given a point x ∈ S, the multiplicity or order of vanishing m of |V | at x is the
multiplicity at x of a general curve C ∈ |V |. Equivalently, if μ1 = blx : S1 −→ S is
the blowing-up of S at x with exceptional divisor E , m is the unique integer such that

V1 =def μ∗
1(V )(−mE) ⊆ H0(S1, μ∗L⊗OS1(−mE)

)

again has at most isolated base-points. We call |V1 | the proper transform of |V | and
L1 =def μ∗L⊗OS1(−mE) the proper transform of L on S1.

Noether’s result is the following:

Proposition A.1 Given V ⊆ H0(S, L) as above, let

μ : S′ −→ S

be a log resolution of |V | constructed as a sequence of blowings-up at points, so that
the proper transform V ′ of V on S′ is base-point free. Denote by mi the multiplicity
of the proper transform of |V | at the center of the i th blow-up. Then:
(i) Writing L ′ for the proper transform of L on S′, one has

(L ′ · L ′)S′ = (L · L)S −
∑

m2
i .

(ii) Let C ∈ |V | be a general curve, and let C ′ ∈ |V ′ | be its proper transform on S′.
Then C ′ is smooth, and

(2g(C ′) − 2) = (2pa(C) − 2) −
∑

mi (mi − 1).

Proof Let Ẽi be the total transform on S′ of the exceptional divisor created at the i th

blow-up. Then

(
Ẽi · Ẽj

) =
{

−1 if i = j,

0 if i �= j .

Moreover,

(
Ẽi ·μ∗B

) = 0
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for any line bundle B on S. On the other hand, by definition of the mi :

L ′ = μ∗L ⊗OS′
(

−
∑

mi Ẽi

)
,

and (i) follows. For (ii), note that

KS′ ≡lin μ∗KS +
∑

Ẽi , (4)

and apply the adjunction formula. The smoothness of C ′ follows from the fact that it
is a general member of a base-point free linear system. 
�
We next show how these ideas lead to a very quick proof of a formula of Deligne [2,
Theorem 2.13] and Hoskin [3].

Proposition A.2 Let

a ⊆ OS

be an integrally closed ideal of finite colength cosupported at a point x ∈ S, and
denote by mi the orders of vanishing of a at x and all infinitely near base-points of a.
Then

colength(a) =
∑

mi (mi + 1)

2
.

Proof From the exact sequence

0 −→ a −→ OS −→ OS/a −→ 0

we see that

colength(a) = χ(S,OS) − χ(S, a).

Now pass to a log resolution μ : S′ −→ S of a so that

a ·OS′ = OS′(−A), with A =
∑

mi Ẽi .

Then OS′(−A) is globally generated with respect to μ, so by a theorem of Lipman
[7, Theorem 12.1], R1μ∗OS′(−A) = 0.2 Moreover a = μ∗OS′(−A) thanks to the
integral closure of a, and hence

2 In our setting, the vanishing in question is very elementary. In fact, the question being local, one can
replace S by an affine neighborhood of x , so that OS′ (−A) is globally generated. Choose a general section
s ∈ �(OS′ (−A)) cutting out a curve � ⊆ S′. Then � is finite over S, so the vanishing of R1μ∗OS′ (−A)

follows from the exact sequence 0 −→ OS′ −→ OS′ (−A) −→ O�(−A) −→ 0.
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428 L. Ein, R. Lazarsfeld

χ(S, a) = χ
(
S′,OS′(−A)

)
.

The statement then follows by using (4) and Riemann–Roch to calculate:

colength(a) = χ(S′,OS′) − χ
(
S′,OS′(−A)

)

= χ(S′,OS′) −
(

(− A ·(− A − KS′))

2
+ χ(S′,OS′)

)

= −
((−∑

mi Ẽi
) ·(−μ∗KS − ∑

(mi + 1)Ẽi
))

2

=
∑

mi (mi + 1)

2
,

as required. 
�
Finally, we note that the proposition implies the two-dimensional case of an inequality
of Lech [6].

Corollary A.3 Let a ⊆ OS be an ideal of finite colength. Then

e(a) + e(a)1/2 � 2 ·colength(a),

where e(a) denotes the Samuel multiplicity of a. In particular,

e(a) � 2 ·colength(a).

Remark A.4 The first inequality is the two-dimensional smooth case of [4, (1.1)].

Proof Wemay assume that a is cosupported at a single point. Furthermore, if a ⊂ OX

denotes the integral closure of a, then

e(a) = e(a) and colength(a) � colength(a).

Thus we may assume in addition that a is integrally closed, putting us in the set-
ting of the previous result. Keeping notation as in the proof of that statement, one
has

e(a) = − (A · A) =
∑

m2
i , colength(a) =

∑
mi (mi + 1)

2
.

Recalling again that
∑

mi �
√∑

m2
i , the required inequality follows. 
�
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