Math 122 (Fall ’12)
Sample Questions for Midterm 2

1. (20pts) Find the derivatives for the following functions

1. \(x^4 + 5x^3 - 2x^2 + 5 \)
 Solutions: \((x^4 + 5x^3 - 2x^2 + 5)' = 4x^3 + 15x^2 - 4x.\)

2. \(x^{100} + e^{100} \)
 Solutions: \((x^{100} + e^{100})' = (x^{100})' + (e^{100})' = 100x^{99}.\) (Note that \(e^{100}\) is a constant.)

3. \(\sqrt[3]{x} - \frac{1}{\sqrt[3]{x^2}} \)
 Solutions: \((\sqrt[3]{x} - \frac{1}{\sqrt[3]{x^2}})' = (\sqrt[3]{x})' - \left(\frac{1}{\sqrt[3]{x^2}}\right)' = (x^{\frac{1}{3}})' - (x^{-\frac{2}{3}})' = \frac{1}{3}x^{-\frac{2}{3}} + \frac{2}{3x^{\frac{5}{3}}}.\)

4. \(e^t + \ln t \)
 Solutions: \((e^t + \ln t)' = (e^t)' + (\ln t)' = e^t + \frac{1}{t}.\)

5. \(e^t \cdot \ln t \)
 Solutions: By product rule, \((e^t \cdot \ln t)' = (e^t)' \cdot \ln t + e^t \cdot (\ln t)' = e^t \cdot \ln t + e^t \cdot \frac{1}{t}.\)

6. \(e^{u^3+u+2} \)
 Solutions: By chain rule, \((e^{u^3+u+2})' = e^{u^3+u+2} \cdot (u^3 + u + 2)' = e^{u^3+u+2} \cdot (3u^2 + 1).\)
7. $\sqrt{\ln x + 2}$
Solutions: By chain rule, $(\sqrt{\ln x + 2})' = [(\ln x + 2)^{\frac{1}{2}}]' = \frac{1}{2} \cdot (\ln x + 2)^{-\frac{1}{2}} \cdot \frac{1}{x} = \frac{1}{2x} \cdot (\ln x + 2)^{-\frac{1}{2}}.

8. $s^3 \cdot \ln(e^s + e^{-s})$
Solutions: $[s^3 \cdot \ln(e^s + e^{-s})]' = (s^3)' \cdot \ln(e^s + e^{-s}) + s^3 \cdot [\ln(e^s + e^{-s})]' = 3s^2 \cdot \ln(e^s + e^{-s}) + s^3 \cdot \frac{1}{e^s + e^{-s}} \cdot (e^s + e^{-s})' = 3s^2 \cdot \ln(e^s + e^{-s}) + s^3 \cdot \frac{1}{e^s + e^{-s}} \cdot (e^s - e^{-s}).$

9. $\frac{x^2 - 1}{x^2 + 1}$
Solutions: By quotient rule, $(\frac{x^2 - 1}{x^2 + 1})' = \frac{(x^2 - 1)'(x^2 + 1) - (x^2 + 1)'(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$

10. x^x (Hint: $x = e^{\ln x}$, and thus $x^x = e^{\ln x \cdot x}$)
Solutions: $(x^x)' = (e^{\ln x \cdot x})' = e^{\ln x \cdot x} \cdot (\ln x \cdot x)' = e^{\ln x \cdot x} \cdot [\ln(x)' \cdot x + \ln x \cdot (x)'] = e^{\ln x \cdot x} \cdot (\frac{1}{x} \cdot x + \ln x) = e^{\ln x \cdot x} \cdot (1 + \ln x) = x^x \cdot (1 + \ln x).$
2. (10pts) Find the equation of the tangent line to the graph of \(y = \ln x \) at \(x = e \). Graph the function and the tangent line on the same axes.

Solutions: Firstly, let us recall that the equation of tangent line of \(y = f(x) \) at \(x = a \) is
\[
y = f'(a)(x - a) + f(a).
\]
Now the function is \(y = f(x) = \ln x \) and we try to write down the equation of tangent line at \(x = e \) (i.e. \(a = e \) in the formula). It is easy to see that \(f(e) = \ln(e) = 1 \). To compute \(f'(e) \), we firstly compute the formula of the deriative function: \(y = f'(x) = (\ln x)' = \frac{1}{x} \). Now just plug \(x = e \) into the formula of \(f'(x) \): \(f'(e) = \frac{1}{e} \). So the equation of tangent line of \(y = \ln x \) at \(x = e \) is
\[
y = \frac{1}{e}(x - e) + 1.
\]
It is not difficult to simply it to get
\[
y = e x.
\]
3. (10pts) With length, \(l \), in meters, the period \(T \), in seconds, of a pendulum is given by
\[
T = 2\pi \sqrt{\frac{l}{9.8}}.
\]
a) How fast does the period increase as \(l \) increases? What are units for the rate of change?

b) Does this rate of change increases or decreases as \(l \) increases?

Solutions:

a) The instantaneous rate of change (i.e. how fast) is the derivative \(T'(l) \).
Indeed, \(T'(l) = (2\pi \sqrt{\frac{l}{9.8}})' = (2\pi \cdot \frac{1}{\sqrt{9.8}} \cdot \sqrt{l})' = 2\pi \cdot \frac{1}{\sqrt{9.8}} \cdot (\sqrt{l})' = 2\pi \cdot \frac{1}{\sqrt{9.8}} \cdot (l^{\frac{1}{2}})' = 2\pi \cdot \frac{1}{\sqrt{9.8}} \cdot \frac{1}{2} \cdot l^{-\frac{1}{2}} = \frac{\pi}{\sqrt{9.8}} \cdot l^{-\frac{1}{2}} \text{(second/meter)}.

b) The rate \(T'(l) \) decreases as \(l \) increases. In fact, \(T''(l) = \frac{\pi}{\sqrt{9.8}} \cdot l^{-\frac{3}{2}} = \frac{\pi}{\sqrt{9.8}} \cdot \frac{1}{\sqrt{l}} \). As \(l \) increases, the denominator \(\sqrt{l} \) increases, so the whole fraction \(T''(l) \) decreases.
Or we can compute \(T''(l) \). \(T''(l) = (\frac{\pi}{\sqrt{9.8}} \cdot l^{-\frac{1}{2}})' = -\frac{\pi}{2\sqrt{9.8}} \cdot l^{-\frac{3}{2}} = -\frac{\pi}{2\sqrt{9.8}} \cdot \frac{1}{\sqrt{l}} \). The point is \(T''(l) \) is negative, which implies \(T'(l) \) decreases.
4. (10pts) A yam is put in a hot oven, maintained at a constant temperature $200^\circ C$. At time $t = 30$ minutes, the temperature of the yam is $120^\circ C$ and is increasing at an (instantaneous) rate of $2^\circ C/min$. Newton’s law of cooling implies that the temperature at time t is given by

$$T(t) = 200 - ae^{-bt}. \tag{1}$$

Find a and b.

Solutions: "At time $t = 30$ minutes, the temperature of the yam is $120^\circ C"$ means $T(30) = 120$, which is $200 - ae^{-30b} = 120$.

"At time $t = 30$ minutes, the temperature of the yam is increasing at an (instantaneous) rate of $2^\circ C/min"$ means $T'(30) = 2$. Again, to get $T'(30)$, we firstly compute $T'(t)$ and then plug in $t = 30$. Since $T'(t) = abe^{-bt}$ (here we view t as a variable and a, b as constant numbers), $T'(30) = abe^{-30b}$. So $T'(30) = 2$ means $abe^{-30b} = 2$.

To sum up, we get two equations about a and b from the problem.

$$200 - ae^{-30b} = 120 \tag{2}$$

and

$$abe^{-30b} = 2. \tag{3}$$

It is not difficult to see that $ae^{-30b} = 80$ from the first equation. So $e^{-30b} = \frac{80}{a}$. Now we plug this into the second equation: $abe^{-30b} = a \cdot b \cdot \frac{80}{a} = 80b = 2$. So $b = \frac{1}{40}$. Plugging this back to either the first or the second equation, we get $a = 80e^{\frac{3}{4}}$.\vspace{10pt}
5. (20pts) Graph the function

\[f(x) = x^3 - 3x^2 + 2 \]

Your answer should include:

a) Local maxima/minima,

b) Inflection points.
6. (20pts) The derivative of \(f(t) \) is given by \(f'(t) = t^3 - 6t^2 + 8t \) for \(0 \leq t \leq 5 \).

i) Graph \(f'(t) \), and describe how the function \(f(t) \) changes over the interval \(t \in [0, 5] \).

ii) When is \(f(t) \) increasing and when is it decreasing?

iii) Where does \(f(t) \) have a local maximum and where does it have a local minimum?

iv) What are the inflection points of \(f \)?

Solutions:

i) & ii) The idea is if \(f'(t) > 0 \) (resp. \(f'(t) < 0 \)) on some interval, then \(f(t) \) is increasing (resp. decreasing) on the same interval. Now we determine when will \(f(t) = t^3 - 6t^2 + 8t \) be positive or negative as follows. To start with, let us find out all critical points of \(y = f(t) \) by solving the equation \(f'(t) = 0 \), which is \(t^3 - 6t^2 + 8t = t(t^2 - 6t + 8) = t(t - 2)(t - 4) = 0 \). So we easily get three critical points \(x_1 = 0 \), \(x_2 = 2 \), and \(x_3 = 4 \). These points divide the whole interval \([0, 5]\) into several smaller pieces, and on each piece \(f'(t) \) will have the same sign. Clearly,

- When \(0 < x < 2 \), \(f'(t) > 0 \), so \(f(t) \) is increasing.
- When \(2 < x < 4 \), \(f'(t) < 0 \), so \(f(t) \) is decreasing.
- When \(4 < x < 5 \), \(f'(t) > 0 \), so \(f(t) \) is increasing.

iii) Since our function is defined over a closed subinterval \([0, 5]\), we have to take both critical points \(x = 0, 2, 4 \) and boundary points \(x = 0, 5 \) into consideration. From i) & ii), it is not difficult to see that local maximal points are \(x = 2 \) and \(x = 5 \), and local minimal points are \(x = 0 \) and \(x = 4 \).

iv) To find the inflection points is the same as to solve the equation \(f''(t) = 0 \). Now that \(f'(t) = t^3 - 6t^2 + 8t \), \(f''(t) = 3t^2 - 12t + 8 \). Now let us solve the equation \(3t^2 - 12t + 8 = 0 \). In general, the solutions of \(ax^2 + bx + c = 0 \) are \(x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \) and \(x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \) (But you’d better try to factor it into two linear terms firstly). Here \(a = 3, b = -12, c = 8 \), so the two solutions or inflection points are \(t_1 = \frac{12 + \sqrt{48}}{6} = \frac{6 + 2\sqrt{3}}{3} \) and \(t_2 = \frac{12 - \sqrt{48}}{6} = \frac{6 - 2\sqrt{3}}{3} \).
7. **(10pts)** When I got up in the morning I put on only a light jacket because, although the temperature was dropping, it seemed that the temperature would not go much lower. But I was wrong. Around noon a northerly wind blew up and the temperature began to drop faster and faster. The worst was around 6pm when, fortunately, the temperature started going back up.

 a) When was there a critical point in the graph of temperature as a function of time?

 b) When was there an inflection point in the graph of temperature as a function of time.

Solutions:

 a) 6pm.

 b) Noon.