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Abstract

Let R = k[Yq, Yo, Y3]/(f), f = Y13 + Y23 + Y33, wherek is an algebraically closed field
with chark # 3. Using Atiyah bundle classification over elliptic curves we describe the
matrix factorizations of the graded, indecomposable refleRiraodules, equivalently we
describe explicitly the indecomposable bundles over the projective dufyg C ]P’,%. Us-
ing the fact that over the completiaR of R every reflexive module is gradable, we ob-
tain a description of the maximal Cohen—Macaulay modules Evserk[[Yl, Yo, Y3]/(f).

0 2002 Elsevier Science (USA). All rights reserved.

Introduction

The nice classification of vector bundles over elliptic curves obtained by
Atiyah [1] enabled C. Kahn to give a description (see [2]) of graded reflexive
modules over minimally elliptic singularities in characteristic 0. Kahn was able
to describe the Auslander—Reiten quivers of graded refleRiraodules. But
how explicit is Kahn'’s description in the hypersurface case? According to [3]
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each graded reflexivR-module is given by a matrix factorization. The matrix
factorizations are not given in Kahn's paper.

The purpose of our paper is the classification of maximal Cohen—Macaulay
modules over the local rin® = k[Y1, Y2, Ya]/(f), f = Y2 + Y3 + Y$, k an
algebraically closed field of characteristic 3. According to a result of Kahn
(cf. [4, Proposition 5.23]) thé*-action onR induces an action on the reflexive
modules overR and, therefore, a grading on such a module compatible to the
k*-action onR. This implies that every reflexive module @his gradable (in the
sense of Yoshino (cf. [3]), that is, for every maximal Cohen— Macaﬂkmyodule
M there exists a grade®-moduleM such thath = M.

Let M andN be graded indecomposable maximal Cohen—MacaRtayod-
ules, thenM = N if and only if M = N(r) for somer. We are, therefore,
interested in classifying the equivalence classes of graded reflexive modules with
two R-modulesM and N being equivalent if\f = N(r) for somes. Therefore,
we shall show that Atiyah’s classification can be explicitly done for the case
of the projective curvef = Yl3 + Y23 + Y33. We were able to write canonical
normal forms for the matrix factorizations of all graded reflexRemodules
of rank one (see Section 3) and to show effectively how we can produce the
indecomposable graded reflexiRemodules of ranks 2 using SNGULAR with
help of a computer (see Section 5).

One difficult problem for us was to find the rank two, graded reflexive module
M5 corresponding to an indecomposable bundle, so-ca@#eavhich plays a key
role in Atiyah’s classification (see Theorem 2.6). The theory saysihet given
by a short exact sequence of bundles

0—-0x—>FH—->0x—0

and so we had to study the so-called graded Bourbaki sequences of [6], which we
present shortly in Theorem 2.1. We found th4t is given modulo shifting by the
graded Bourbaki sequence

0—- R(-6) > M —->m— 0,

wherem = (Y1, Y2, Y3)R. In [5] this sequence is called fundamental sequence
and M fundamental module. It turned out thaf, is also the reflexive hull of
the differential module oR. For the indecomposability aff (see Lemma 2.5)

we noticed thatV is the second syzygy of an indecomposable maximal Cohen—
Macaulay R/(Y3)-module overR and it was enough to apply a result of [7].
Section 1 presents shortly the main ideas of Atiyah’s classification.

1. Preliminaries on Atiyah’s classification of vector bundles over elliptic
curves

Throughout this section(X, Ox) will represent an elliptic curve, which is
supposed to be projective, irreducible and smobth> X will be a vector bundle
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overX and we shall identify it with the locally free sheaf of sections denotefl.by
The base field will be denoted ltyand it is supposed to be algebraically closed.
Let £(X) be the category of vector bundles. Here we have two operations—the
direct sum@d and the tensor produ@t. This category satisfies the Krull-Schmidt
theorem with respect t®, this means that each vector bundle can be decomposed
uniquely in indecomposable bundles. We shall study only the indecomposable
bundles.

Atiyah gave, in [1], the complete classification of indecomposable vector
bundles over elliptic curves. This classification depends on three parameters,
two discrete parameters—the rank and the degree of a bundle, and a continuous
one—the points of the curvE (such a classification is called “tame” in terms of
representation theory).

A line bundles a vector bundle of rank one and for a vector buridiaf rankr
we associate a line bundle ¢&Y := /\" E. Thedegree of a line bundlis defined
via the well-known isomorphism D{X)/~ = Pic(X) (see [8, (lI, 6.11), (ll,
6.15)]), where Pi¢X) is the set of isomorphism classes of line bundles,(Bjv
is the set of Weil divisors and~” denotes the linear equivalence of the divisors.
Thedegree of a vector bundIg will be the degree of the line bundle d£Y). Let
Pp € X be a point. Then the map — Ox (P — Pp) defines a bijection between
the points ofX and Pi€(X)—the set of isomorphism classes of line bundles of
degree 0 (see [8, (IV, 1.3.7)]).

Let £(r,d) be the set of isomorphism classes of indecomposable vector
bundles of rank and degred. So, above we just saw th&t1, 0) is in bijection
with the points ofX if we fix Pg.

Theorem 1.1(Atiyah). There exists a canonical bijectien 4 : £(1,0) — E(r, d)
for everyd € Z, r € N*.

The construction o#; 4 is given by induction, using the following lemmas.

Lemma 1.2.There exists iif (r, 0) a unique up-to isomorphism bundie having
non-trivial global sections. There exists an exact sequence

0-0Ox—>F,—>F_1—>0
forall r > 2 and F, = Ox.

Lemma 1.3.F; is self-dualthatis, F} := Hom(F,, Ox) = F,), detF, = Ox and
the mapa,.0:£(1,0) — E(r, 0) given byL ~ L ® F, is bijective. Ifchark =0
thenF, = §"~1F, for all r > 1, whereS' E denotes the i-symmetric tensor power
of E.

Lemma 1.4.Let L be a line bundle of degrek ThenL* € £(1, —1) and the map
Bra:E@r d) — E(r,r +d) given byE ~~ E ® L is bijective and its inverse is
given byG ~~ G ® L*.
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Lemma 1.5. Let E € £(r,d), d > 1. Then there exists a uniqu@p-to
isomorphisibundleG € £(r + d, d) given by an extension

0-0%—-G—-E—0

and the correspondende — G defines a bijectiony, 4: E(r,d) — E(r +d, d).

Lemma 1.6.LetE € £(r,d). ThenE(r,d) ={EQL|Lc&(1,00}, EQL=E
for someL € £(1, 0) if and only if L"/9°4"d = Oy

We shall also use the following formulae for the degree of a vector bundle.

Lemma1.7.Let0— 2(E) — ;_; Ox(n;) > E — 0 be an exact sequence of
bundles, then

degE) + ded2(E)) =3) n;.
i=1

Sketch proof of Theorem 1.1.Let for r,d given h = (r,d) be the greatest
common divisor of, d. By Lemma 1.3 it is enough to find a bijectidit/, 0) —
E(@r,d). If d > r, then, using Lemma 1.4 several times, we may reduce to the
case whend <r. Now, by Lemma 1.5, we may reduee:=r — d and find

a bijection&(h,0) — E(r — d, d); proceeding in the same way we can, again,
supposel > r. Clearly, Euclid algorithm shows that these reductions end when
r=handd=0. O

2. Graded maximal Cohen—Macaulay modules over homogeneous cubic
hypersurfaces

Letk be an algebraically closed field of characteristi8, f an irreducible ho-
mogeneous polynomial of degree three¥in Yo, Y3 and R = k[Y1, Y2, Y31/(f).
We shall assume thaft is anisolated singularity that is, R, is a regular lo-
cal ring for all height one prime ideal € Speck. A gradedmaximal Cohen—
Macaulay R-module(in short MCM) is a graded finitely generated modie
with depthM = dimR = 2 (see [9]). In fact, the graded MCM-modules are
exactly thereflexivegraded finitely generatell-modules; that is, module¥® for
which the canonical map — M** is an isomorphism, wherg&* is the dual
of M, that is, M* = Homg (M, R). A natural way to associate a graded MCM
module to any graded finitely generated one is taking the bidual.

A pair of n-square matrice®, ¥ overk[Y1, Y2, Y3] satisfying the conditions
o =ve = f -1, is calledmatrix factorization of f. 1,, denotes the unitz x m
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matrix. According to [3], each graded MCM-module M having no free direct
summands, has a 2-periodic minimal free resolution

i RS R LR RS M0
given by agraded reducednatrix factorization(p, ), that is, the entries of
(¢, ¥) are homogeneous of degreel. In this case the first syzyg?,{,(M) of M
is given by (v, ¢) and we haveM = 22(M), that is, M = 2% (25 (M)). Note
also that.Q,le(M) has no free direct summandsM has none. Using again the
periodicity, we see that iM is MCM with no free direct summands, thé# is
indecomposable if and only i21M is also indecomposable.

Let X = Proj(R). If M is a gradedR-module, then we may find a quasi-
coherent shea#f over X by sheafificatiorand, conversely, given a sheaf of
Ox-modules one defines thgraded R-module associated t&F by I'.(F) =
D, 7 ' (X, F(n)), where F(n) = Ox(n)®OX}' (see [8, (ll, 5.13)]). Then

F = I'(F) and the canonical ma,, : M — F*(IVI) is an isomorphism if and
only if depth, M > 2 by a well-known theorem of Grothendieck and Serre
(see [10]). If M is a graded MCMR-module, thersy, is an isomorphism angtf;,
is a freeR,-module for all height one prime ideajsof R (MCM modules over
regular local rings are free!). This results in an equivalence between graded MCM
R-modules and'(X) given byM — M. We need a small dictionary to translate
the terms from bundle theory into the terms of MCM modules: for instance, when
does an inclusiow ¢ M of graded MCMR-modules define a bundle inclusion
N C M? Note thatN c M is a bundle inclusion if on level of poinis that is,
gradedp € SpecR, htp = 1, we have a retraction of the inclusion between free
modules,N, C M,. In particular, this means thad//N),, is torsion-free for all
graded height one prime ideglof R. Thus,N C M induces a bundle inclusion
if the annihilator ideal of any non-zero elementMf/ N is anm-primary ideal
(m denotegY1, Yo, Y3)R) or O, the first possibility fails because depth/ /N > 1
by Depth Lemma. Henc&y c M induces a bundle inclusion if and onlyM /N
is torsion-free, the sufficiency being easy, since finitely generated torsion-free
modules over &VRare free.

A short exact sequence of gradReémodules

O>N—>M-—>M/N—O0
with N, M graded MCMR-modules induces an extension of bundles
O>N—>M—>E—0

if and only if M/N is torsion-free andf is the sheafification of//N or,
equivalentlyE = (M/N)*)~. If £ = Ox then(M/N)** = R andM /N can be
identified with a graded idedl of R which must ben-primary becausé** = R.
According to [6] agraded Bourbaki sequends an exact sequence of graded
R-modules

O>F—>M-—1-—0,
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where F is free, M is a graded MCMR-module and! is a gradedn-primary
ideal, orl = R (see also Theorem 6 of [11, §4, no. 9]).

An R-module M of rank r is orientableif (A" M)** = R. So the graded
orientable MCMR-modules induce bundles of degree multiple gbi@gR(1) =
3! and the MCM R-module M> corresponding toF, (see Lemma 1.3) is
orientable. But which is really/,? In the next part of this section we shall solve
this question for the casg = Yl3 + Y23 + Yg’ (R is an isolated singularity because
chark # 3).

By Serre’s condition, we see tha is normal R is Cohen—Macaulay
and an isolated singularity). Using graded variants of Propositions 1.8, 1.9,
Lemmas 1.10, 1.11, and Theorem 3.1(b) of [6], we obtain the following theorem.

Theorem 2.1(Herzog—-Kuhl).

(1) If M is a graded orientable®k-module, then there exists a graded Bourbaki
sequence

O F—->M-—=1-0.

(2) If I is a gradedm-primary ideal ands = dim; SoqR/I) then there exists
a graded Bourbaki sequence

O F,—>M—>1—0

with F; free of ranks and suchM is graded, orientable and unique{up-to
isomorphismp determined by. Moreover,M is a direct sum on,%(I) and
a free module. ID}Q(I) has no free direct summands, thetW) = s + (1),
wherew (M) denotes the minimal number of generatordbf

(3) Let! be anm-primary ideal. Then an extension of gradBRemodules

EO0—>R(—t) > N—>1—-0

is a graded Bourbaki sequendghat is, N is MCM) if and only if
Ext}(,(l, R) = wg/; (the canonical module of R/I) is a cyclic R-module
(in particular, R/ is Gorensteihand (¢) is a generator oExt}e(l, R) [9].

(4) There exist non-free orientable graded MCRmodulesM of rank 2 only
with u(M) =4, or 6.

For the proof we mention only that (3) follows from the proof of Proposition
1.9 of [6].

Remark 2.2.Lemmas 1.2 and 1.3 say thgs is self-dual,F> A F» = Ox and we
have an exact sequence

0— Ox —> Fo— Ox — 0.
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So the graded MCMR-module M2 corresponding taF, is orientable with
M3 = M> and such that there exists a Bourbaki sequence

O0— R(—t) > M»—1—0, teN,

with dim; SoqR/I) = 1, that is, R/I is Gorenstein. By the above theorem,
w(M>) can be 4, or 6 and if?}e(l) has no free direct summands theq/) can
be 3, or 5. Note that (m) = 3 andk = R/m is Gorenstein Artinian.

Lemma 2.3.Let
" Y Y3 O
Y Y? 0 13
-YZ 0 Y -1,
0 -Y2 v} n
and g the squaret-matrix obtained fromp adding a fourth row

y=0 v -vi v,

Y2 Y, -¥3 O
p=|YZ rn 0 -v3|, ¥=
Y2 0 "1 Yo

thatis,¢ = ()‘j) Then(y, ¢) is a matrix factorization of2: (m) and the following
exact sequence

LR @R-2 S R-1® L2, g

is a minimal free graded resolution ef. In particular, .Q,l?(m) has no free direct
summands.

Proof. Itis easy to see thaty = f - 14, f = Y2+ Y3+ Y3. Thenyp = f - 14
and the above sequence is a complex simée part ofp and (Y1, Yo, ¥3,0) is
the first line ofvy. Let u1,u2,u3 € R be such thatZ?zl Y;u; = 0. We show
thatu = (u1 u» u3)" belongs to Inp, that is, to the module generated by the
columns ofp. Subtracting multiples of the columns 2 and 3odfrom «, we may
suppose that1 depends only orY1. As the maps are graded, we may suppose
is graded and so; has the formeY;, wheree € k ands € N. If ¢ # 0, then the
equationZ?:1 Y;u; =0 in R gives necessarily + 1 = 0 mod 3 and subtracting
from u multiples of the first column op we reduce to the case; = 0. Then
Youp + Yauz = 0 and sincgY», Y3} is a regular sequence iR we see that is

a multiple of the column 4 of.

Next we show that Kes C Imy. Since Imy = Kerg ((¢, ) is a matrix
factorization!) it is enough to show that Kerc Kerg. Let §2, §3 the rows 2, 3
of p. We haveY283 — Y28, + Y1y = 0. If v € Ker p, thenszv = §,v = 0 and we
obtainY1yv = 0. ButY; is non-zero divisor iR and soyv = 0, which is enough
sincep = ()fj)

Hence, the sequence is exact andgop) is a matrix factorization of?}e (m).
Thus,Q,%(m) has no free direct summandsig
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Proposition 2.4.There exists a graded Bourbaki exact sequence
0— R(—-6) — Ql%(m) —-m—0

and RB) ® Q,%(m) corresponds to a bundle of degréeand rank2, which is
self-dual®

Proof. By Lemma 2.3 we have the following exact sequence

0— Q22(m) - R(=3) & R(—2)° L R(-13 L1219, oy, g

ThusQ,%(m) corresponds to a bundle of degree
deg R(—3) ® R(—2)%) — ded R(—1)%) = —27+ 9= —18=deg R(—6)).

SORB)® Q,% (m) corresponds to a bundle of degree 0.
By Theorem 2.1(2), we have a graded Bourbaki sequence

O—->R(-t) > M—->m—>0, reN,

andM is a direct sum of?,% (m) and a free module. BU?}Q (m) has no free direct
summands by Lemma 2.3 and ggM) = 1+ u(m) = 4. As M(Q,%(m)) =4

we obtainM = Q,%(m). The above graded Bourbaki sequence gives Mat
corresponds to a bundle of degree exactly Regt), sot must be 6. Dualizing

the above graded Bourbaki sequence, we obtain the same sequence after some
shifting because Ektm, R) =k. O

Lemma 2.5.Let P be the MCMR-module given oveR := R/(Y3) = k[Y1, Y21/
(Y2 + Y3) by the matrix factorizationg, 8),

=\y2 ’ = 2 y2 -
Y 1 -YZ Y}

Then
(1) 2x(P) =2k m);
(2) £2%(m), £22(m) are indecomposable modules.

Proof. Let
_ _ ) Y31,
'L'—(9 |—Y312) and n= < —Y3212 | 0 >

1 Note that Q%(m) is the reflexive hull of the module of differentials @ (cf. Section 5).
Yoshino [5] calls this sequence fundamental sequence.@%dn) fundamental module.Q}e(m)
and Q,%(m) can also be obtained using the construction described in [12]. They associAte to
21.3:1 w;y; a matrix factorizationM (w, y). Applying this tow; = x; and y; = xiz we obtain the
modules above.
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The sequence
RPLR* SR P50

is exact. Indeed Coker= R2/Im6 = P andtn = 0, because is given by the
first rows ofg andn = ¥, whereg, ¢ were defined in Lemma 2.3. if, v € R?
satisfiesz (1)) = 0, thenfu — Y3v = 0. Subtracting fron(} ) some multiples of
columns 3, 4 ofp (these are in Im!), we may suppose that does not depend
on ¥3. Thendu = 0 mod Y3 impliesu = dw for aw € R2. So, subtracting from
(') some multiples of the first two columns gf we may reduce ta = 0. Then
Y3v =0 and sov = 0 becausé&’s is non-zero divisor inR.

The above sequence says thigi(P) = Imn = Imy = 21 (m). SinceP is an
indecomposable MCMR-module (see, for example, the list of indecomposable
MCM modules over singularityD4 [5]), we see by Theorem 4.1 of [7] that
21(P) is indecomposable, too. Thed}(m) is indecomposable and 22 (m)
is, too? O

Theorem 2.6.M2 = R(3) ® Q,%(m) is the unigugup-to isomorphistindecom-
posable graded, orientable, self-dual MCRAmodule of degre® and rank2. It
corresponds to the bundl& € £(2, 0).

Proof. The first sentence follows from Proposition 2.4 and Lemma 2.5, except
the uniqueness. Thud» corresponds to a bundéfrom £ (2, 0) with non-trivial
global sections (it contain®!). By Lemma 1.2.£ is unique with such property
andé =F,. O

3. Rank one maximal Cohen—Macaulay modules over’ + Y23 + YS?

As usual, letR = k[Y1,Y2, Y3l/(f), f = YZ + Y3 + Y3, k being an
algebraically closed field with chars£ 3. If A = [A1: A2 : 1] is a point of
V(f) C P?, denote

(Y]_—)\]_Yg —(Y22+)»2Y2Y3+)‘%Y32)>
(p)\ = )
Yo—AaYs Y2+ AaY1Yz+2A2YZ2
by = YE+aY1Ys+a3Y] Y7+ AoYaV3+23Y5
—(Y2—22Y3) Y1 —2Y3
If A=[r1:1:0]€V(f) we set

2 This result was also proved by Kawamoto und Yoshino (cf. [13]). They proved Mh3ats
decomposable for a normal local two-dimensional donfaonly if R is a cyclic quotient singularity.
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<Y1 — Yo —Y2 )
(p)\ = £
Y3 Y2+ aY1Ys + A2Y2
2 2y2 2
vy = Y7+ AY1Ye + A7Y5 Y3 .
—T3 Y1—21Y2

Theorem 3.1.(p;, ¥,) is a matrix factorization for allx € V(f) and the sets
of graded MCM moduled1_, = {Cokerg;, | A € V(f)}, M1 ={Cokery; | 1 €
V(f)} have the following properties

(1) Everytwo-generated non-free graded M@vimodule is isomorphic with one
of the modules from\1 U M_1.3

(2) Every two different graded MCMR-modules fromM1 U M_; are not
isomorphic.

(3) The modules froa\11 are the syzygies and also the duals of the modules
from M _1.

(4) The modules fronM 1, M_1 all have rank one.

Proof. Clearly ¢, v, = ¥, = f - 1. It is easy to see that no elementary
transformations can transforg into av;, for A, A’ € V(f). Indeed, let/ be an
invertible 2x 2 matrix overk[X] andU’ the homogeneous part of of degree 0,
i.e., the entries oV’ are the constant terms of the entriesf ThenU’ is
still invertible if V = U1, thenV’ = (U")~1. If Uy, = v,/ V for some points
A, A € V(f), then it follows thatU’g, = ;. V. Note that the degree of entry
(1,1) in U'g; is 1 but the degree of the entty, 1) in v;, V' is 2. It follows that the
entry(1, 1) in U'¢;, is 0. Then the first row of/’ must be zero because the entries
of the first column ofp, are linearly independent ovér But this is not possible
sinceU’ is invertible. Thus, no MCMR-module of M1 is isomorphic with one
of M_1. The rest of (1), (2) is proved in Proposition 1.1 of [14], where, by
mistake, we forget aboutt_1 but this could be done similarly. By construction,
the modules ofM1 are the syzygies of the modules.bt_1. Since the transpose
of ¢, is exactly(g é)t/m (2 é) we see that Cokef, is isomorphic with the dual of
Cokerg;,.

Now, clearly, rank Cokep, + rank Cokery, = 2 because we have an exact
sequence of graded modules

0— Cokery, — F — Cokerg, — 0,
whereF is free of rank 2. So (4) holds, too.0O

Next we describe all three-generated, rank one, graded MGModules.
By Corollary 1.3 of [6], we havex(M) < 3 rank M for all graded MCM R-

3 Note that according to our aim as isomorphism of graded modules are also allowed isomorphisms
of degree different from zero.
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modulesM. Thus, the graded MCMrR-modules of rank 1 are generated by,
at most, three elements. The following lemma gives mainly the form of three-
generated, rank one, graded MG&4modules.

Lemma 3.2.Let p1, p2, w1, wo be linear forms ok[Y1, Yo, Y3] such that

(1) f is contained in the intersections of the idedlss, p2), (w1, w2) of
k[Y1, Y2, Y3];

(2) {p1, w1, w2}, {p2, w1, wo} are linearlyk-independent systems of linear forms
in k[Y1, Yo, Y3].

Then there exist linear forms b, ¢, d such that

0 p1 p2
detf wy a b |=1f
w2 ¢ d

Proof. By (1) there exist two degree formg, n2 such thatf = n1p01 + n202,
which are not unique. Note thaty = n1 + p28, 1, = 12 — p18 satisfy also
f =njp1+ nyp2 for any linear forms. We show that for somé there exist
a,b,c,d linear forms such that

w1 b w1 a ,
= UZ'

=-n; and ‘

w2 d
By (2) we have

wy ¢

(@) n1= p2n11+ wini2+ wan1z;
(b) 12 = p1n21 + winzz + wan23

for some linear forms;;. If 11 = n21 = 0 then we may take = —123, ¢ = 122,
b = —n13, d = n12 and § = 0 above. If not, let us say11 # 0, then we may
suppose evem11 ¢ (w1, w2) because, otherwise, we may reduce to the case
n11=0.

Then{n11, w1, wa} is a linearlyk-independent system of linear forms and we
may express

n21=Aini1+ Aowi+ Azwz  forig, Ap, Az €k.
Substitutingy21 in (b) we obtain

(0)) 1y =mnz2 — daprma= 2 ¢].
for some linear forma, c. Also note that (a) says that there exist/ linear forms
such that
1=n- satisfies— ;= | ¢ b
N1 ="n1— p2n11 n= wy d|
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To finish we must see thay = —1 because, theld,= —n11 works.

We havef = n1p1+ n2p2 = p1p2n11(1 + A1) modulo(ny, n5). As (], np) C
(w1, wz) we obtain(i1 + 1) p1p2n11 € (w1, w2) because € (w1, we) by (1). But
(w1, wy) is a prime ideal sincéws1, w2} are linearlyk-independent linear forms.
By (2) and by choice ofi11 we haveps, p2, n11 ¢ (w1, w2). Then(i1+1) p1p2n11
is not contained ifw1, w2) unlesshy = —-1. O

Lemma 3.3.Letys, @2 be linear forms ink[Y1, Y2, Y3]. Then there exist no linear
formsa, b, ¢, d such that

0 ¢1 @2
detl o1 a b )=f
g2 ¢ d

Proof. If {¢1, @2} is linearly dependent, then there are no suclb,c,d
becausef is irreducible. Suppose nofw1, @2} is linearly independent and there
exista, b, ¢, d as above. Theyf = —go%d — (pga + p192(c+b) € ((p%, V192, (p%).
Lett be a linear transformation sendifgy, ¢2) in (Y1, Y2), letus sayt (¥;) = u;.
Thus,{u1, uz, uz} are linearly independent linear forms and

(f) = u% + ug + ug € (le Y1Yo, YZZ)

PutY1 =Y, =0in t(f) and we obtairy_>_; i3 = 0 for i; := u; (Y1 = Y2 = 0).
This is a contradiction sincer, u2, u3 are linearly independent.o

If A =[r1:%2:1]is a point of V(f) € P2, setpy, = Y1 — A1Y3, p2) =
Yo—A2Y3. If A=[A1:1:0]€ V(f), setpoyn = Y1 — A1Y2, p2). = Y3.

Proposition 3.4.Let M be a three-generated, rank one, graded M&unodule.
Then there exist, & € V(f), A # & and some linear forms, b, ¢, d such that

0 pu o2
p=|pr a b
pe ¢ d
and its adjoint matrixy)s form a matrix factorization oM.

Proof. As rank M = 1 every matrix factorizatioriy’, ') of M has dep’ = f

(see [3, (6.4)]). It is enough to show that has a generalized zero, that is,

¢’ receives an entry zero (we may suppose in the positipi)) after some
elementary transformations. Indeed, th&ncould be arranged in the required
form by some elementary transformations on lines 2, 3 and columns 2, 3. We
have # & because of Lemma 3.3. But we obtain a generalized zerg'foy
applying the following theorem.
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Theorem 3.5(Eisenbud [15]) Suppose: = (g;;);,j IS ann x n matrix of linear
forms with no generalized zeros. Thagta £ 0mod(hy, ..., h,—1) for any linear
formsh, ..., hy—_1.

Back to our proof, we see thatgf would not have any generalized zeros, then
f =dety’ ¢ (h1, ho) for any linear forms. Butf € (o1, p2,) foranyi € V(f).
Contradiction!

An elementary different proof can easily be obtained by subtracting from the
first column ofe’ the second column multiplied witla € £ and the third column
multiplied with 8 € k («, B to be determined). Then, in the new column, write
that the third entry is a multiple of the first one with This condition gives three
equations o, 8, y, identifying the coefficients af1, Y2, Y3 which finally means
a cubic monic equation ia (k is algebraically closed!). O

Proposition 3.6.Let M be a three-generated, rank one, graded M@&vnodule
and A, & e V(f), A #&, a,b,c,d, ¢, ¥ as in Proposition3.4. Then, for each
n € V(f), there exist® € V(f), 6 # n and some linear forma’, ', ¢’, d’ such

that
0 p1 o2
(P/ =\ pw a b
pe ¢ d
and its adjoint matrixy’ form another matrix factorizatioty’, ') of M.

Proof. LetU = (u;;), V = (v;;) be invertible 3x 3 matrix overk, wherew;;, v;;
are parameters. After a renumeratioryofve may supposks = &3 = 1. We shall
give here the proof only in the cage = 1, the case;z = 0 being similar. We want
to find U, V such that the first line ip’ = UpV ~1is (0 1y p2n), that is, the first
line in Ug should be0 p1, p2,) V. Identifying the entries we obtain

U12p1E + U1302c = P1yV21 + P2,V31,

U11p1) + U12a + U13c = pP1,yV22 + P2, V32,

u1102;. + uizb + u13d = p1,v23 + p2;v33.

We should see that we are able to fildV invertibly satisfying the above

system. Identifying the coefficients &f in the system we obtain 9 equations:

u12 = v21, u13= V31, —u1251 — u1362 = —n1v21 — N2v31,

u11+ ui12a1 + u13c1 = v22, u12a2 + u13c2 = V32,

—Aqu11+ u12a3 + U133 = —N1v22 — 72032,

u12b1 + u13di = vz3, u11+ u12by + uizds = v33,

—u11A2 + u12b3 + u13dz = —n1v23 — N2V33,
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wherea =>"a;Y;,b=>_b;Yi,c=> c¢iYi, ai,bi,ci €k.

Eliminatev;; from the system and we obtain an homogeneous system of three
equations inui1, u12, u13 Whose coefficient matrix is exactly the transpose
of ¢, where we substitut® = n1, Y2 =2, Y3=1. Then defA = f(») =0 and
SO0 we may choose a non-zero solution, u12, w13, which can be completed to
an invertible matrixU and similarlyvy1, v21, v31 which can be completed to an
invertible matrix V. We may takep’ to be UgV~1 multiplied with a non-zero
elementofk. O

Let Po=[—1:0:1]€ V(f). Foreachh =[A1:A2:1] € V(f), A # Pp set

0 P1r P2
apy=|Y1+Y3 —Yo— A3 —wY3 )
Y, wYs3 (m+DY¥s—n

wherew = 12/(x1 + 1). (If A1 = —1 then we obtaim., = 0 sincex € V(f)
and soir = Py. Contradiction!) As in Proposition 3.4 we spt) = Y1 — A1Y3,
o2 = Yo — AoY3. If [A1:1:0] set

0 Jin P25,
oy = <Y1 +Y3 —amV1 a4 A{Yz) ,
Y2 Ys— 11 -1
wherep1;, = Y1 — A1Y2, p2) = Y3 as in Proposition 3.4. Les; be the adjoint
matrix of o;,.

Theorem 3.7. (a;, B,) is a matrix factorization for allx € V(f), A # Po
and the set of three-generated MCM gradeemodulesMg = {Cokera, | A €
V(f), » # Po} has the following properties

(1) the modules fronM o have all ranks ong

(2) every two different modules froMtg are not isomorphic

(3) every three-generated, rank one, non-free, graded M&Module is isomor-
phic with one module from\1.

Proof. Note thata;, 8, = Bya) = f 13 because det, = f. By [3, (6.4)] we
obtain then rankCokera, ) = 1. For (2) we suppose that there exist two invertible
matricesU/, V overk of determinant 1 such thata) = oz V fori, £ e V(f)\ Po.
Identifying the entries ol/«;, oz V and the coefficients of; we obtain a big
system of equations. UsingN85ULAR [16], we obtain in Lemma 5.1, with the
help of a computen, = &.

(3) By Proposition 3.4 given a three-generated, rank one, non-free, graded
MCM R-module there exist, & € V(f), A # &, and some linear forms, b, ¢, d
such that

0 pu P2
p=|p1 a b

pe ¢ d
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and its adjoint matrix form a matrix factorization 8. By Proposition 3.6 we
may suppos€ = Py. Itis enough to show that, after elementary transformations,
o Will becomec;,.

Set the following forms of degree two:

b

N O R ‘ and
P2 ¢ p2x d
7 . b
p=[% a9 5= 7
p2% ¢ p2e d

where the linear forma, b, ¢, d are given inx;.. We have— 1,8 + p2;,y = detyp =
f=—pud+ p2.y and it follows p2, (y — y) = p1.(8 — 8). As {pwr, p21} Is @
regular sequence, we obtain— y = pp.e, § — 8 = p2re for a linear forme.
By constructiony, y € (p1e, p2e) and sopne € (p1e, p2¢). But p1y, p1e, p2s
are three linearly independent linear forms and, therefore, they form a regular
sequence ik[Y1, Y2, Y3]. It follows ¢ € (p1g, p2¢), let us say = u1p1e + uop2e
for someus, up € k (degree reason!).

Subtracting the first line gf multiplied byu» from the second line and adding
the first line multiplied byu; to the third line, we obtain some new, 8’ such
that

/

y' =y - ‘ P _L:Z pu.=y —epy. =7y and similarly, & =35.

2t u

Thus we may suppose=y, § = 3§, and so

piz b—l;’
pz d—d

p1E a—a
p2e Cc—¢C

o |

As {p1s, p2e} form a regular sequenee— a = vipie, ¢ — ¢ = vippe, b — b =
vop1e, d — d = vpppe for somevs, vz € k. Subtracting the first column af
multiplied with v1 from the second one, we reduce to the case a, ¢ = c.
Similarly, subtracting the first column gf multiplied with v, from the third one,
we reduce to the cage=b, d = d, thatis,g = ;. O

Theorem 3.8.The modules oM U {R} (see3.7) induce the bundles & (1, 0)
and the modules 0%, M _1 induce the bundles &f(1, 1), £(1, —1) after some
possible shifting.

Proof. It is enough to see that the graded MGRmodules ofM; correspond,
after a possible shifting to the bundles &1, 1) and conversely. Indeed, then
the graded MCMR-modules ofM_1, that is, the duals of the graded MCR}
modules ofM1 (see Theorem 3.1(3)) must correspond after a possible shifting to
the duals of the bundles éf(1, 1), that is, to the bundles & (1, —1). Since Mg
consists of all rank one graded MCR-modules which are not ilM1 U M _3
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we conclude that the modules aflp must correspond, after a possible shifting
with the bundles o€ (1, 0).

By [8, (II, 6.11), (Il, 6.15)] any line bundle of degree one has the f6g(P)
for a point P € X. By [8, (Il, 6.18)] (see also the proof of [8, (IV, 1.3)]) the
structure sheak(P) of the closed sub-schem@} of X (a skyscraper sitting
at P) is given by an exact sequence

0— Ox(—=P)—> Ox — k(P)— 0.
Tensoring withOx (P) we obtain a new exact sequence
0— Ox - Ox(P) — k(P) — 0,

sinceOx (P) is locally free of rank one, tensoring by it does not affe@®).
This new exact sequence is the bottom line of the following commutative
diagram with lines and columns exact:

0—=0(=3)—=0(-3) @ O(-2)>—0(-2)>—0
|

f v (L1€2)

\

0 o O® 01 O-=1)—0
|
|
\

0 Ox Ox(P) k(P) 0

0 0 0

whereQ = OP%, the first two lines are canonically split sequences, the first and

third columns are parts of the free resolutions’bf, respectivelyk(P) over O
(the last one is the Koszul complex atd ¢» are the linear forms defining, for
instance, ifP = (A1 : A2 : 1) we may takef1 = Y1 — A1Y3, £2 = Yo — A2Y3) and
the second column is constructed canonically. Thanust be given by a matrix
({; o 222) whereg; are forms inY of degree 2.

Let Mp be the graded MCMrR-module corresponding t&@x (P). Tensoring
the second column witlDy ®»—see the diagram above—we obtain a corre-
sponding exact sequence

R(=3)® R(-2)> > R® R(-1) - Mp — 0,
wheret = (8 Zi Z;) As rankMp = 1 we see that the rows ef must be linearly
dependent and sgi Zj\ must be a multiple off with a non-zero constamt € k
by degree reason. Thu|§,_2f1 quz| = f and soMp = Cokeryp € M1, where
Yp is givenin Theorem 3.1. O

Corollary 3.9. Define M_1, M1, and Mg for R = k[Y1, Yz, Y3] /(Y3 + Y5 +
Y33) similarly by the corresponding matrix factorizations. Then, every rank one
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maximal Cohen—Macaulay module oRIis isomorphic to a module iM _1 U
Mi1UMgU{R}.

Proof. The corollary is an immediate consequence of the fact that every reflexive
R-module is gradable [4, Proposition 5.23], the fact that every rank one maximal
Cohen—Macaulay module ové is generated by at most three elements (cf. [6,
Corollary 1.3]), and Theorems 3.1 and 3.7

4. Cohen-Macaulay modules of higher rank

In this section we use Atiyah’s classification to describe the MCM of rank 2
and give an algorithm to compute the matrix factorization of modules of higher
rank.

Definition 4.1. Ford = 0, £1, +2, 3 Igt M(2,d) be the set of all isomorphic
classes of MCM oveRr, respectivelyR, corresponding to the vector bundles in
£, 4d).

The idea of the classification is now to describ€&(2, d) using Lemmas 1.3,
1.4,and 1.6.

Theorem 4.2.

(1) Let M be an indecomposable graded MCM of rahkver R, thenM (n) €
M(2,d) for suitable/;} andd, —2 < d < 3. Let M be an indecomposable
MCM of rank2 over R, thenM € M2, d) for a suitabled, —2 <d < 3.

(2) M(2,0) = {(M2 ® L)** | L € Mo} U {M>2}, where M2 is given in Theo-
remz2.6.

(3) M(2,4£2) = {(M2® L)** | L € Mx1}.

(4 M(2,3) = {(25(M2) ® L)™ | L € Mo} U {2} (M)}

={28(L) | L € Mo} U{Q3(M2)}.

(5) M(2,+1) = {(Rx(M2) ® L) | L € M1}

={(AQL)*|Ae M(2,3), L e M11}.2

Proof. (2) and (3) are immediate consequences of Atiyah’s result (Lemma 1.3)
and Theorem 3.8. The first equalities of (4) and (5) and the second equality
of (5) are consequences of Lemmas 1.6 and 1.4 and the fact that using

4 The tensor product and the reflexive hull can be computed using8 AR (see Section 5) and,
therefore, we can obtain all the matrix factorizations of rank 2 MCMs.
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Lemma 1.7!2,{,(M2) € M(2,3). The second equality of (4) follows from the fact
that the modules inV(2, 3), exceth}e(Mz), are generated by three elements
(cf. Lemma5.4). O

Remark 4.3.To give an explicit description of the MCMs of higher rank we again
use Atiyah’s classification and the fact that we can compute (cf. Section 5)

o M, =S (Mp)*,

° .Q,le(E) € M(r,d’) for E € M(s,d) with s + r generators and a suitabfé
with d + d’ = 0(3).

o (EQ L) for L e M1UM_1U M.

5. Some results obtained by BIGULAR
In this section we want to give the proof for Theorem 3.7(2) and some
other useful results we obtained with the help of the computer algebra system

SINGULAR [16].

Lemmab5.1.Let

0 y1—ays y2 — by
A= (yl +y3 —y2—bys —2y3 ) and
2 7y3 —y1+ (—a+1ys
0 y1—cy3 y1—dys
B = <y1+y3 —y2—dy3 —Xy3 )
2 xXy3 —y1+ (=c+1)ys

be two matrices such that=b2/(a + 1), x =d?/(c+ 1), a®+ b3 +1=0, and
¢34+ d®+1=0. ThenA and B are equivalent if and only if = ¢ andb = d.>

Proof. We write the conditiong/ A = V B for suitable invertible matrice¥, V:

let
uil uz u3 V1 V2 U3
U=|us us ue], V={va vs vs],
u7 ug ug v7 vg U9

then we obtain the following system of equations:

up —v4=0, ug+v7=0, ug+v4=0,
up—v5=0, u7+vg=0, us+vs =0,

5 Note thatA and B define modules ofM corresponding to the points : b : 1], respectively
[c:d:1].
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uz—vg =0, ug —vg =0, ug+vg=0,
us— v, =0, uz—v7=0, ug—v1 =0,
ug—v2 =0, ups +vg=0, ug+v2 =0,
ug+v3 =0, u1—vg=0, u7—v3=0,

u2 + cva+dvr =0,

au1+ bur — wuz — cvs — dvg =0,

buyl+ wuo +auz — ug — cvg — dvg =0,
us —v1+dvg+xv7 =0,

aug + bus — wug + v2 — dvz — xvg =0,
bug + wus + aug — ug + vz — dvg — xvg =0,
ug — xvg +cvy —v7 =0,

au7 + bug — wug + xvs — cvg + vg =0,
bu7+ wug + aug — ug + xvg — cvg + vg =0,
detU) —1=0, detV)—-1=0.

It is not difficult to transform this system of equations to the following equivalent
system:

b=d, a=c, —c+l=—wd, d*=w(c+1),
x=w, vS:l, Vg = V1 = U5 = U] =U5=Ug,
Up=U3=U4=Ug=UT=Ug=Vp =V3=Vg4=vg=v7 =08 =0,

which proves Lemma 5.1.
One can useIBGULAR as follows to perform the transformation of the system
above:

LIB"matrix.lib";
option(redSB);
ring R=0, (u(1..9),v(2..9),y(1..3),x,w,a,b,c,d),Ip;
ideal |=c3+d3+1,
xd+c2-c+1,
Xc+x-d2,
a3+b3+1,
wb+a2-a+1,
wa+w b2;
gring Qstd(l);

matrix U 3][3]=u(l..9);

matrix V[3][3]=v(l..9);

matrix A[3][3]=0, y(1)-a*y(3), y(2)-b*y(3),
y(1)+y(3), -y(2)-b*y(3), -wy(3),
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y(2), wey(3), -y(1) +(-a+1)*y(3);
matrix B[ 3][3]=0, y(1)-c*y(3), y(2)-d*y(3),

y(1)+y(3), -y(2)-d*y(3), -x*y(3),

y(2), x*y(3), -y(1) +(-c+1)*y(3);

matri x CC=UrA-B*V;

ideal I=flatten(C);

i deal |1=transpose(coeffs(l,y(1)))[2];

i deal |2=transpose(coeffs(l,y(2)))[2];

i deal |3=transpose(coeffs(l,y(3)))[2];

i deal J=I1+] 2+] 3+i deal (det(U)-1,det(V)-1);
i deal K=std(J);

K

K[ 1] =b-d

K[ 2] =a-c

K[ 3] =w*d+c"2-c+1
K[ 4] =w* c+w d"2
K[ 5] =x- w

K[ 6] =v(9)"3-1
K[ 7] =v( 8)

K[ 8] =v(7)

K[ 9] =v( 6)

K[ 10] =v(5) -v(9)
K[ 11] =v(4)

K[ 12] =v(3)

K[ 13] =v(2)

K[ 14] =v(1)-v(9)
K[ 15] =u(9) - v(9)
K[ 16] =u( 8)

K[ 17] =u(7)

K[ 18] =u( 6)

K[ 19] =u(5) -v(9)
K[ 20] =u(4)

K[ 21] =u(3)

K[ 22] =u(2)

K[ 23] =u(1)-v(9)

We seethab=d anda=c¢. O

Lemmab5.2.Let

0 yi y2+y3
A=|y1+ys —y2+y3 n

y2 —y1i+y3 —»n
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and M the MCM corresponding td, then(M @ M ® M)* = R.
Let

0 —y1+y3 y2—bys
B=|yi1+y3 —y2—bys —b?/2y3
¥2 b?/2y3 -y
such that»® = —2 and N the MCM corresponding t®, thenN is self-dual.

Proof. First of all we give procedures to compute the reflexive hull, the tensor
product in the category of Cohen—Macaulay modules, the mosizleand to
check the isomorphy of two MCMs, which are generated by three or six elements.

LIB"matrix.lib";

proc reflexivHul | (matrix M

{
modul e N=nr es(transpose(M, 3)[3];
N=prune(transpose(N));
return (matrix(N));

}

proc tensorCM matrix Phi, matrix Psi)
{
int s=nrows(Phi);
int g=nrows(Psi);
matri x A=tensor (unitmat(s), Psi);
matri x B=tensor (Phi,unitmat(q));
matri x R=concat (A B);
return(reflexivHull (R));
}

proc M2(ideal 1)

{
matri x A=syz(transpose(nres(l,3)[3]));
return (transpose (A));

}

proc islsoCMmatrix A matrix B)
{

def R=baseri ng;

int n=nrows(A);

int mENn*n;

nunber p;

if (deg(mnpoly)!=-1){p=m npoly;}

execute("ring S=("+charstr(R+"), ("+varstr(R) +",
u(l.."+string(m+"),
v(1.."+string(m+")),dp;");
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nunber p=i map(R, p);
i f(deg(p)!=-1){m npol y=p;}

matrix Un][n]=u(l..m;

matrix V[n][n]=v(1l..m;

matri x A=i mp(R A);

matri x B=i map(R, B);

matri x C=U*A-B*V,

nmodul e se=syz(ideal (det(A),det(B)));
ideal I=flatten(C);

int j;

i deal J=det(U)-se[1][1],det(V)+se[1][2];
for(j=1;j<=size(l);]++)

J=J+transpose(coef (I1[j],var(1)*var(2)*var(3)))[2];

}
int d=deg(std(J)[1]);
setring R
if (d==0){return (0);}
return(l);
}
ring R=(0,b), (y(1..3)),(c,dp);
m npol y=b3+2;
gring S=std(y(1)"3+y(2)"3+y(3)"3);
matri x Al 3][3]=0, y(1), y(2) +y(3),
y(1)+y(3), -y(2)+y(3),  y(1),
y(2), -y(1)+y(3),  -y(1);
mat ri x B[3][3]=0, y(1)-y(3), y(2)-b*y(3),
y(1)+y(3), -b*y(3)-y(2), -(b*b/2)*y(3),
y(2), (b*b/2)*y(3), -y(1);
tensor CM A, tensorCM A, A) ) ;
_[1,1]=0

This proves thatM @ M @ M)* = R.

tensor CM B, B) ;
_[1,1]=0

We obtainthal N @ N)*=R. O

Lemma 5.3.Let M and N be defined as in Lemnia2. Then the following hold

(1) (22%(m) ® N)** is not isomorphic ta22 (m).
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(2) 2p(m) = (kM) @ M*)™°

(3) (25(m) ® N)™ = 2% (m).

(4 0> R — .Q,l?(m) — (yf, v2, y3) — 0 is a Bourbaki exact sequence for
Q% (m).

(5) .Q,%(m) is isomorphic to the reflexive hull of the differential modulerof

Proof.

i deal |=maxideal (1);

matrix C=M2(I);

print(C;

0, y(2), y(1), y(3)"2,
y(2), 0‘ y(S), _y( 1)/\2‘
y( 1)1 'y(3)1 Ov y(2)A21

y(3)"2, y(1)"2, -y(2)"2, 0

This is the matrix corresponding id, = .QI% (m).
matri x Cl=tensorCM C, B);

This is the matrix corresponding ta/2 ® N)**.

nrows(d);
6
nrows (O);
4

The module($22(m) ® N)** is generated by six elements. The mod@i(m) is
generated by four elements. They cannot be isomorphic. This proves (1).

matri x D=transpose(syz(Q));

D is the matrix corresponding tﬁ}e(m).

matri x E=tensorCM D, A) ;

E is the matrix corresponding (@,%(m) ® M)**,
matrix F=syz(A);

F is the matrix corresponding m}e(M).

islsoCM F, E);
1

This proves (2).
matri x El=t ensor CM B, E);
E1 is the matrix corresponding (@,%(m) @ M ® N)**.

6 M is as rank 1 module indecomposable and, therefrg(M) and (2% (M) ® M*)** are
indecomposable, too. This is another proof for the fact .mktm) and.QI%(m) are indecomposable.
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i slsoCM EL, E);
1

This proves (3).

I=y(1)"2,y(2),y(3);
matrix D1=M2(1);
El=t ensorCM D1, A) ;

This is the matrix corresponding to the module defined by the Bourbaki sequence
of (4), tensorised by/.

i slsoCM EL, E);
1

This proves (4).

ring RO=0, (y(1..3)),(c,dp);

qring q=std(y(1)"3+y(2)"3+y(3)"3);

i deal I=jacob(y(1)"3+y(2)"3+y(3)"3);

matrix E=reflexivHull (transpose(matrix(1)));

The matrix corresponding to the reflexive hull of the differential modul® of
print(E);

0, y(3), y(2), y(1"2,
y(S), 0, 'y(l), y(2)/\2,
y(2)1 y( 1)1 Ov 'y(3)/\2,

y(1) "2, -y(2)"2, y(3)"2, 0

I =maxi deal (1) ;
matrix C=F2(1);
matri x Asi map(R A);

matri x El=tensorCME, A);
matri x Cl=tensorCM C, A);

We tensorise both modules by (corresponding to the matriX) to obtain
modules generated by six elements. They are easier to compare.

i slsoCM EL, C1);
1

This proves (5). O

Lemma 5.4.

(1) The MCM corresponding toM (2,0) except M, are generated by six
elements.
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(2) The MCM corresponding toM (2, 2), M(2, —2) are generated by four
elements.

(3) The MCM corresponding ta1(2, 3) exceth}(,(Mz) are generated by three
elements.

(4) The MCM corresponding taM (2, —1), M(2,1) are generated by five
elements.

Proof.

ring R1=(0,a),(y(1..3),b),(c, 1p);
ideal I=y(1)"3+y(2)"3+y(3)"3,
a3+b3+1;

gring Sl=std(l);

matrix A[2][2]=y(3)-a*y(1), y(2)"2+b*y(2) *y(1) +b"2*y(1) "2,
-(y(2)-b*y(1)), y(3)"2+a*y(1)*y(3)+a"2*y(1)"2;
matrix AL[2][2] =y(1)+y(3), y(2)"2,
-y(2), y(1)"2-y(1)*y(3) +y(3)"2;
matri x C=i map(S, O ;
The matrix corresponding tbf>.
matri x D=i map(S, D);
The matrix corresponding t@,le(Mz).

nrows(tensorCM C, A));

4

nrows(tensor CM transpose(A), O ;
4

This proves (2).

nrows(tensorCM D, A));

5

nrows(tensorCM transpose(A),D));
5

This proves (4).

matri x Dl=t ensorCM D, t ranspose(Al));

print(Dl1);

y( 1)'y(3)v 01 y(2)1 'y(3)1 y(2)A21

0, y(1)-2*y(3), 0, -y(2), -3*y(3)"2,
0, 'y(2), y( 1) +y(3)1 0, 'Y(z)*y(3)y
y(3), 0, y(2), y(1)., O,

-y(2), 37y(3), 0, y(2), y(1)"2+2*y(1)*y(3)+4*y(3)"2
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This is a special element inM (2, 1). Now we use the fact tham (2, 1) =
{((AQ L)Y | Ae M(2,3),L € M11}.
nrows (tensorCM D1, A));
3
This proves (3).
ring R2=(0,a),(y(1..3),e,b), 1p;
ideal 1=y(1)"3+y(2)"3+y(3)"3,
a3+b3+1,
e*b+a2-a+l,
e*ate-b2;

gring S2=std(l);

matrix B[ 3] [3] =0, y(3)-ary(1), y(2)-b*y(1),
y(3)+y(1), -b*y(1)-y(2), -e*y(1),
y(2), e*y(1), (-a+1)*y(1)-y(3);

matrix C=i map(S, O ;
nrows (tensorCMC, B));
6

This proves (1). O

Finally, we give the matrix factorizations faWz and M4. Here we use the
following description of the symmetric algebra: Lat= (a;;) be them x n
presentation matrix of th®-moduleM and

F1(2) 21
Do =AL )
Fu(2) Zn
let S := R[z1,...,z4]/(F1, ..., Fy), thenS§ is the symmetric algebra dff and
S, ={H € S | H homogeneous ir, deg H = n} is thenth symmetric power

of M. The corresponding reflexive moduleS$(M) = S;*. We use the following
procedure:

proc syn(matrix Mint n)
{
def R=basering;
int mencol s(M;
string s=string(m;
nunber p;
int j;

i f(deg(m npoly)!=-1){p=m npoly;}

execute("ring S=
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("+charstr(R) +"), ("+varstr (R +",z(1.."+s+"))

nunber p=i map(R p);

i f(deg(p)!=-1){m npol y=p;}

matrix Meimap(R M ;

matrix NJm[1]=z(1..m;

ideal K=z(1..m;

ideal I=flatten(MN)*(K(n-1));

K=K"n;

poly f=z(1);

for(j=2;j<=mj++)

{

f=t*z(j);

}

matri x T=coeffs(l,K f);

setring R

matrix T=i map(S, T);

return(reflexivHul 1 (T));
}
ring R=0, (y(1..3)),dp;
qring Q=std(y(1)"3+y(2)"3+y(3)"3);
i deal |=maxideal (1);
matrix C=M2(I);
print(symC, 2));
Ov y( 1)! Ov 'y( 2)v O,
01 'y(3), y( 1)‘ 0‘ 0,
Ov 01 Ov y( 3)! 'y(2)1
2*y(3)"2, 0, y(2), O, y(1),
2*y(2)"2, 0, -y(3), 0, 0,
2*y(1)~2, 0, 0, 0, -y(3),
2xy(1)*y(2)*y(3), y(2)"2, 0, y(1)"2, 0,
print(symC, 3));
0, y(1), -y(2), 0, 0, 0, 0, o0,
0, 0, 0, 0, -y(2), O, y(1l), O,
0, 0, 0, 0, 0, 0, -y(3),2*y
0, 0, 0, 0,-y(3),-2*y(2), O, o,
y(3)"2, 0, 0, 0, 0, y(1), 0, -y(2
y(2)*y(3),-y(3).0, -y(2),-y(1), 0O, 0, 0,
y( 1)*y(3)101 y(S)v y(l)v 01 01 'y(2), 01
y(2)"2, 0, 0, 0, 0, 0, 0, y(
y(1)~2, 0, 0, 0, 0, -y(3), 0, 0
0, y(2)"2,y(1)"2,-y(3)"2,0,y(1)*y(3),0,y(2)*

-y(3),

y(1),

236 235

,dp; "),

0,
-y(2),
y(1),
0,
0,
0,
-y(3)"2

0,
0,
0

y(2),
0,

-y(3), 0,
0,-2%y(3),

(1).y(2), 0,

) y(1),

3),

cooooo0

¥(3),
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