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Abstract

LetR = k[Y1, Y2, Y3]/(f ), f = Y3
1 + Y3

2 + Y3
3 , wherek is an algebraically closed field

with chark �= 3. Using Atiyah bundle classification over elliptic curves we describe the
matrix factorizations of the graded, indecomposable reflexiveR-modules, equivalently we
describe explicitly the indecomposable bundles over the projective curveV (f )⊂ P2

k
. Us-

ing the fact that over the completion̂R of R every reflexive module is gradable, we ob-
tain a description of the maximal Cohen–Macaulay modules overR̂ = k❏Y1, Y2, Y3❑/(f ).
 2002 Elsevier Science (USA). All rights reserved.

Introduction

The nice classification of vector bundles over elliptic curves obtained by
Atiyah [1] enabled C. Kahn to give a description (see [2]) of graded reflexive
modules over minimally elliptic singularities in characteristic 0. Kahn was able
to describe the Auslander–Reiten quivers of graded reflexiveR-modules. But
how explicit is Kahn’s description in the hypersurface case? According to [3]
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each graded reflexiveR-module is given by a matrix factorization. The matrix
factorizations are not given in Kahn’s paper.

The purpose of our paper is the classification of maximal Cohen–Macaulay
modules over the local rinĝR = k❏Y1, Y2, Y3❑/(f ), f = Y 3

1 + Y 3
2 + Y 3

3 , k an
algebraically closed field of characteristic�= 3. According to a result of Kahn
(cf. [4, Proposition 5.23]) thek∗-action onR̂ induces an action on the reflexive
modules over̂R and, therefore, a grading on such a module compatible to the
k∗-action onR̂. This implies that every reflexive module on̂R is gradable (in the
sense of Yoshino (cf. [5]), that is, for every maximal Cohen–MacaulayR̂-module
�M there exists a gradedR-moduleM such thatM̂ ∼= �M.

LetM andN be graded indecomposable maximal Cohen–MacaulayR-mod-
ules, thenM̂ ∼= N̂ if and only if M ∼= N(r) for some r. We are, therefore,
interested in classifying the equivalence classes of graded reflexive modules with
two R-modulesM andN being equivalent ifM ∼= N(r) for somes. Therefore,
we shall show that Atiyah’s classification can be explicitly done for the case
of the projective curvef = Y 3

1 + Y 3
2 + Y 3

3 . We were able to write canonical
normal forms for the matrix factorizations of all graded reflexiveR-modules
of rank one (see Section 3) and to show effectively how we can produce the
indecomposable graded reflexiveR-modules of ranks� 2 using SINGULAR with
help of a computer (see Section 5).

One difficult problem for us was to find the rank two, graded reflexive module
M2 corresponding to an indecomposable bundle, so-calledF2, which plays a key
role in Atiyah’s classification (see Theorem 2.6). The theory says thatF2 is given
by a short exact sequence of bundles

0→OX → F2 →OX → 0

and so we had to study the so-called graded Bourbaki sequences of [6], which we
present shortly in Theorem 2.1. We found thatM2 is given modulo shifting by the
graded Bourbaki sequence

0→R(−6)→M→ m→ 0,

wherem = (Y1, Y2, Y3)R. In [5] this sequence is called fundamental sequence
andM fundamental module. It turned out thatM2 is also the reflexive hull of
the differential module ofR. For the indecomposability ofM (see Lemma 2.5)
we noticed thatM is the second syzygy of an indecomposable maximal Cohen–
MacaulayR/(Y3)-module overR and it was enough to apply a result of [7].
Section 1 presents shortly the main ideas of Atiyah’s classification.

1. Preliminaries on Atiyah’s classification of vector bundles over elliptic
curves

Throughout this section,(X,OX) will represent an elliptic curve, which is
supposed to be projective, irreducible and smooth.E→X will be a vector bundle
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overX and we shall identify it with the locally free sheaf of sections denoted byE .
The base field will be denoted byk and it is supposed to be algebraically closed.
Let E(X) be the category of vector bundles. Here we have two operations—the
direct sum⊕ and the tensor product⊗. This category satisfies the Krull–Schmidt
theorem with respect to⊕, this means that each vector bundle can be decomposed
uniquely in indecomposable bundles. We shall study only the indecomposable
bundles.

Atiyah gave, in [1], the complete classification of indecomposable vector
bundles over elliptic curves. This classification depends on three parameters,
two discrete parameters—the rank and the degree of a bundle, and a continuous
one—the points of the curveX (such a classification is called “tame” in terms of
representation theory).

A line bundleis a vector bundle of rank one and for a vector bundleE of rankr
we associate a line bundle det(E) :=∧r

E. Thedegree of a line bundleis defined
via the well-known isomorphism Div(X)/∼ ∼= Pic(X) (see [8, (II, 6.11), (II,
6.15)]), where Pic(X) is the set of isomorphism classes of line bundles, Div(X)

is the set of Weil divisors and “∼” denotes the linear equivalence of the divisors.
Thedegree of a vector bundleE will be the degree of the line bundle det(E). Let
P0 ∈X be a point. Then the mapP →OX(P − P0) defines a bijection between
the points ofX and Pic0(X)—the set of isomorphism classes of line bundles of
degree 0 (see [8, (IV, 1.3.7)]).

Let E(r, d) be the set of isomorphism classes of indecomposable vector
bundles of rankr and degreed . So, above we just saw thatE(1,0) is in bijection
with the points ofX if we fix P0.

Theorem 1.1(Atiyah).There exists a canonical bijectionαr,d :E(1,0)→ E(r, d)
for everyd ∈ Z, r ∈ N∗.

The construction ofαr,d is given by induction, using the following lemmas.

Lemma 1.2.There exists inE(r,0) a unique up-to isomorphism bundleFr having
non-trivial global sections. There exists an exact sequence

0→OX → Fr → Fr−1 → 0

for all r � 2 andF1 =OX .

Lemma 1.3.Fr is self-dual(that is,F ∗
r := Hom(Fr ,OX)∼= Fr), detFr =OX and

the mapαr,0 :E(1,0)→ E(r,0) given byL� L⊗ Fr is bijective. Ifchark = 0
thenFr ∼= Sr−1F2 for all r � 1, whereSiE denotes the i-symmetric tensor power
ofE.

Lemma 1.4.LetL be a line bundle of degree1. ThenL∗ ∈ E(1,−1) and the map
βr,d :E(r, d)→ E(r, r + d) given byE � E ⊗ L is bijective and its inverse is
given byG�G⊗L∗.
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Lemma 1.5. Let E ∈ E(r, d), d � 1. Then there exists a unique(up-to
isomorphism) bundleG ∈ E(r + d, d) given by an extension

0→Od
X →G→E→ 0

and the correspondenceE→G defines a bijectionγr,d :E(r, d)→ E(r + d, d).

Lemma 1.6.LetE ∈ E(r, d). ThenE(r, d)= {E ⊗ L | L ∈ E(1,0)}. E ⊗ L∼= E

for someL ∈ E(1,0) if and only ifLr/gcd(r,d) =OX .

We shall also use the following formulae for the degree of a vector bundle.

Lemma 1.7.Let 0→Ω(E)→⊕s
i=1OX(ni)→E→ 0 be an exact sequence of

bundles, then

deg(E)+ deg
(
Ω(E)

)= 3
s∑
i=1

ni.

Sketch proof of Theorem 1.1.Let for r, d given h = (r, d) be the greatest
common divisor ofr, d . By Lemma 1.3 it is enough to find a bijectionE(h,0)→
E(r, d). If d � r, then, using Lemma 1.4 several times, we may reduce to the
case whend < r . Now, by Lemma 1.5, we may reducer := r − d and find
a bijectionE(h,0)→ E(r − d, d); proceeding in the same way we can, again,
supposed � r. Clearly, Euclid algorithm shows that these reductions end when
r = h andd = 0. ✷

2. Graded maximal Cohen–Macaulay modules over homogeneous cubic
hypersurfaces

Let k be an algebraically closed field of characteristic�= 3,f an irreducible ho-
mogeneous polynomial of degree three inY1, Y2, Y3 andR = k[Y1, Y2, Y3]/(f ).
We shall assume thatf is an isolated singularity, that is,Rp is a regular lo-
cal ring for all height one prime idealp ∈ SpecR. A gradedmaximal Cohen–
MacaulayR-module(in short MCM) is a graded finitely generated moduleM
with depthM = dimR = 2 (see [9]). In fact, the graded MCMR-modules are
exactly thereflexivegraded finitely generatedR-modules; that is, modulesM for
which the canonical mapM →M∗∗ is an isomorphism, whereM∗ is the dual
of M, that is,M∗ = HomR(M,R). A natural way to associate a graded MCM
module to any graded finitely generated one is taking the bidual.

A pair of n-square matricesϕ,ψ overk[Y1, Y2, Y3] satisfying the conditions
ϕψ =ψϕ = f ·1n is calledmatrix factorization off . 1m denotes the unitm×m
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matrix. According to [3], each graded MCMR-moduleM having no free direct
summands, has a 2-periodic minimal free resolution

· · ·→ Rn
ϕ−→ Rn

ψ−→Rn
ϕ−→Rn →M→ 0

given by agraded reducedmatrix factorization(ϕ,ψ), that is, the entries of
(ϕ,ψ) are homogeneous of degree� 1. In this case the first syzygyΩ1

R(M) ofM
is given by(ψ,ϕ) and we haveM ∼=Ω2

R(M), that is,M ∼= Ω1
R(Ω

1
R(M)). Note

also thatΩ1
R(M) has no free direct summands ifM has none. Using again the

periodicity, we see that ifM is MCM with no free direct summands, thenM is
indecomposable if and only ifΩ1M is also indecomposable.

Let X = Proj(R). If M is a gradedR-module, then we may find a quasi-
coherent sheaf̃M overX by sheafificationand, conversely, given a sheafF of
OX-modules one defines thegradedR-module associated toF by Γ∗(F) =⊕

n∈Z
Γ (X,F(n)), whereF(n) = OX(n)

⊗
OX

F (see [8, (II, 5.13)]). Then

F ∼= Γ̃∗(F) and the canonical mapδm :M → Γ∗(M̃) is an isomorphism if and
only if depthR M � 2 by a well-known theorem of Grothendieck and Serre
(see [10]). If M is a graded MCMR-module, thenδM is an isomorphism andMp

is a freeRp-module for all height one prime idealsp of R (MCM modules over
regular local rings are free!). This results in an equivalence between graded MCM
R-modules andE(X) given byM→ M̃. We need a small dictionary to translate
the terms from bundle theory into the terms of MCM modules: for instance, when
does an inclusionN ⊂M of graded MCMR-modules define a bundle inclusion
Ñ ⊂ M̃? Note thatÑ ⊂ M̃ is a bundle inclusion if on level of pointsp; that is,
gradedp ∈ SpecR, htp = 1, we have a retraction of the inclusion between free
modules,Np ⊂Mp. In particular, this means that(M/N)p is torsion-free for all
graded height one prime idealsp of R. Thus,N ⊂M induces a bundle inclusion
if the annihilator ideal of any non-zero element ofM/N is anm-primary ideal
(m denotes(Y1, Y2, Y3)R) or 0, the first possibility fails because depthRM/N � 1
by Depth Lemma. Hence,N ⊂M induces a bundle inclusion if and only ifM/N
is torsion-free, the sufficiency being easy, since finitely generated torsion-free
modules over aDVRare free.

A short exact sequence of gradedR-modules

0→N →M→M/N → 0

with N,M graded MCMR-modules induces an extension of bundles

0→ Ñ → M̃→ E → 0

if and only if M/N is torsion-free andE is the sheafification ofM/N or,
equivalently,E ∼= ((M/N)∗∗)∼. If E =OX then(M/N)∗∗ ∼= R andM/N can be
identified with a graded idealI of R which must bem-primary becauseI∗∗ ∼=R.
According to [6] agraded Bourbaki sequenceis an exact sequence of graded
R-modules

0→ F →M→ I → 0,
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whereF is free,M is a graded MCMR-module andI is a gradedm-primary
ideal, orI =R (see also Theorem 6 of [11, §4, no. 9]).

An R-moduleM of rank r is orientable if (
∧r M)∗∗ ∼= R. So the graded

orientable MCMR-modules induce bundles of degree multiple of 3(degR(1)=
3!) and the MCMR-moduleM2 corresponding toF2 (see Lemma 1.3) is
orientable. But which is reallyM2? In the next part of this section we shall solve
this question for the casef = Y 3

1 + Y 3
2 + Y 3

3 (R is an isolated singularity because
chark �= 3).

By Serre’s condition, we see thatR is normal (R is Cohen–Macaulay
and an isolated singularity). Using graded variants of Propositions 1.8, 1.9,
Lemmas 1.10, 1.11, and Theorem 3.1(b) of [6], we obtain the following theorem.

Theorem 2.1(Herzog–Kühl).

(1) If M is a graded orientableR-module, then there exists a graded Bourbaki
sequence

0→ F →M→ I → 0.

(2) If I is a gradedm-primary ideal ands = dimk Soc(R/I) then there exists
a graded Bourbaki sequence

0→ Fs →M→ I → 0

with Fs free of ranks and suchM is graded, orientable and uniquely(up-to
isomorphism) determined byI . Moreover,M is a direct sum ofΩ2

R(I) and
a free module. IfΩ1

R(I) has no free direct summands, thenµ(M)= s+µ(I),
whereµ(M) denotes the minimal number of generators ofM.

(3) Let I be anm-primary ideal. Then an extension of gradedR-modules

(ξ) 0→ R(−t)→N → I → 0

is a graded Bourbaki sequence(that is, N is MCM) if and only if
Ext1R(I,R)

∼= ωR/I (the canonical moduleω of R/I ) is a cyclicR-module
(in particular,R/I is Gorenstein) and(ξ) is a generator ofExt1R(I,R) [9].

(4) There exist non-free orientable graded MCMR-modulesM of rank 2 only
with µ(M)= 4, or 6.

For the proof we mention only that (3) follows from the proof of Proposition
1.9 of [6].

Remark 2.2.Lemmas 1.2 and 1.3 say thatF2 is self-dual,F2 ∧ F2 ∼=OX and we
have an exact sequence

0→OX → F2 →OX → 0.
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So the graded MCMR-moduleM2 corresponding toF2 is orientable with
M∗

2
∼=M2 and such that there exists a Bourbaki sequence

0→ R(−t)→M2 → I → 0, t ∈ N,

with dimk Soc(R/I) = 1, that is,R/I is Gorenstein. By the above theorem,
µ(M2) can be 4, or 6 and ifΩ1

R(I) has no free direct summands thenµ(I) can
be 3, or 5. Note thatµ(m)= 3 andk =R/m is Gorenstein Artinian.

Lemma 2.3.Let

ρ =
Y 2

1 −Y2 −Y3 0
Y 2

2 Y1 0 −Y3

Y 2
3 0 Y1 Y2

 , ψ =


Y1 Y2 Y3 0
−Y 2

2 Y 2
1 0 Y3

−Y 2
3 0 Y 2

1 −Y2

0 −Y 2
3 Y 2

2 Y1


andϕ the square4-matrix obtained fromρ adding a fourth row

γ = (0 Y 2
3 − Y 2

2 Y 2
1

)
,

that is,ϕ = (
ρ
γ

)
. Then(ψ,ϕ) is a matrix factorization ofΩ1

R(m) and the following
exact sequence:

ψ→R(−3)⊕R(−2)3
ρ→ R(−1)3 (Y1,Y2,Y3)−−−−−−→ m→ 0

is a minimal free graded resolution ofm. In particular,Ω1
R(m) has no free direct

summands.

Proof. It is easy to see thatϕψ = f · 14, f = Y 3
1 + Y 3

2 + Y 3
3 . Thenψϕ = f · 14

and the above sequence is a complex sinceρ is part ofϕ and (Y1, Y2, Y3,0) is
the first line ofψ . Let u1, u2, u3 ∈ R be such that

∑3
i=1Yiui = 0. We show

that u = (u1 u2 u3)
T belongs to Imρ, that is, to the module generated by the

columns ofρ. Subtracting multiples of the columns 2 and 3 ofρ from u, we may
suppose thatu1 depends only onY1. As the maps are graded, we may supposeu

is graded and sou1 has the formεY s1 , whereε ∈ k ands ∈ N. If ε �= 0, then the

equation
∑3
i=1Yiui = 0 in R gives necessarilys + 1≡ 0 mod 3 and subtracting

from u multiples of the first column ofρ we reduce to the caseu1 = 0. Then
Y2u2 + Y3u3 = 0 and since{Y2, Y3} is a regular sequence inR we see thatu is
a multiple of the column 4 ofρ.

Next we show that Kerρ ⊂ Imψ . Since Imψ = Kerϕ ((ϕ,ψ) is a matrix
factorization!) it is enough to show that Kerρ ⊂ Kerϕ. Let δ2, δ3 the rows 2, 3
of ρ. We haveY 2

2 δ3 − Y 2
3 δ2 + Y1γ = 0. If ν ∈ Kerρ, thenδ3ν = δ2ν = 0 and we

obtainY1γ ν = 0. ButY1 is non-zero divisor inR and soγ ν = 0, which is enough
sinceϕ = (ρ

γ

)
.

Hence, the sequence is exact and so(ψ,ϕ) is a matrix factorization ofΩ1
R(m).

Thus,Ω1
R(m) has no free direct summands.✷
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Proposition 2.4.There exists a graded Bourbaki exact sequence

0→R(−6)→Ω2
R(m)→ m → 0

andR(3) ⊗ Ω2
R(m) corresponds to a bundle of degree0 and rank2, which is

self-dual.1

Proof. By Lemma 2.3 we have the following exact sequence

0→Ω2
R(m)→R(−3)⊕R(−2)3

ρ−→ R(−1)3 (Y1,Y2,Y3)−−−−−−→ m → 0.

ThusΩ2
R(m) corresponds to a bundle of degree

deg
(
R(−3)⊕R(−2)3

)− deg
(
R(−1)3

)=−27+ 9=−18= deg
(
R(−6)

)
.

SoR(3)⊗Ω2
R(m) corresponds to a bundle of degree 0.

By Theorem 2.1(2), we have a graded Bourbaki sequence

0→R(−t)→M→ m → 0, t ∈ N,

andM is a direct sum ofΩ2
R(m) and a free module. ButΩ1

R(m) has no free direct
summands by Lemma 2.3 and soµ(M) = 1 + µ(m) = 4. As µ(Ω2

R(m)) = 4
we obtainM ∼= Ω2

R(m). The above graded Bourbaki sequence gives thatM

corresponds to a bundle of degree exactly degR(−t), so t must be 6. Dualizing
the above graded Bourbaki sequence, we obtain the same sequence after some
shifting because Ext1

R(m,R)= k. ✷
Lemma 2.5.LetP be the MCMR-module given over�R :=R/(Y3)∼= k[Y1, Y2]/
(Y 3

1 + Y 3
2 ) by the matrix factorizations(θ, δ),

θ =
(
Y 2

1 −Y2

Y 2
2 Y1

)
, δ =

(
Y1 Y2
−Y 2

2 Y 2
1

)
.

Then

(1) Ω1
R(P )

∼=Ω1
R(m);

(2) Ω1
R(m),Ω

2
R(m) are indecomposable modules.

Proof. Let

τ = (θ | −Y312) and η=
(

δ Y312

−Y 2
3 12 θ

)
.

1 Note thatΩ2
R
(m) is the reflexive hull of the module of differentials ofR (cf. Section 5).

Yoshino [5] calls this sequence fundamental sequence andΩ2
R(m) fundamental module.Ω1

R(m)

andΩ2
R
(m) can also be obtained using the construction described in [12]. They associate tof =∑3

i=1wiyi a matrix factorizationM(w,y). Applying this towi = xi and yi = x2
i we obtain the

modules above.
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The sequence

R4 η→ R4 τ→ R2 → P → 0

is exact. Indeed Cokerτ = �R 2/ Imθ ∼= P andτη = 0, becauseτ is given by the
first rows ofϕ andη = ψ , whereϕ,ψ were defined in Lemma 2.3. Ifu, ν ∈ R2

satisfiesτ (u
ν
) = 0, thenθu − Y3ν = 0. Subtracting from( u

ν
) some multiples of

columns 3, 4 ofη (these are in Imη!), we may suppose thatu does not depend
on Y3. Thenθu≡ 0 modY3 impliesu= δw for aw ∈ R2. So, subtracting from
(
u
ν
) some multiples of the first two columns ofη, we may reduce tou= 0. Then

Y3ν = 0 and soν = 0 becauseY3 is non-zero divisor inR.
The above sequence says thatΩ1

R(P )
∼= Imη= Imψ ∼=Ω1

R(m). SinceP is an
indecomposable MCM�R-module (see, for example, the list of indecomposable
MCM modules over singularityD4 [5]), we see by Theorem 4.1 of [7] that
Ω1
R(P ) is indecomposable, too. ThenΩ1

R(m) is indecomposable and soΩ2
R(m)

is, too.2 ✷
Theorem 2.6.M2 = R(3)⊗Ω2

R(m) is the unique(up-to isomorphism) indecom-
posable graded, orientable, self-dual MCMR-module of degree0 and rank2. It
corresponds to the bundleF2 ∈ E(2,0).

Proof. The first sentence follows from Proposition 2.4 and Lemma 2.5, except
the uniqueness. ThusM2 corresponds to a bundleE from E(2,0) with non-trivial
global sections (it containsO!). By Lemma 1.2,E is unique with such property
andE = F2. ✷

3. Rank one maximal Cohen–Macaulay modules overY 3
1 + Y 3

2 + Y 3
3

As usual, letR = k[Y1, Y2, Y3]/(f ), f = Y 3
1 + Y 3

2 + Y 3
3 , k being an

algebraically closed field with chark �= 3. If λ = [λ1 : λ2 : 1] is a point of
V (f )⊂ P2

k, denote

ϕλ =
(
Y1 − λ1Y3 −(Y 2

2 + λ2Y2Y3 + λ2
2Y

2
3

)
Y2 − λ2Y3 Y 2

1 + λ1Y1Y3 + λ2
1Y

2
3

)
,

ψλ =
(
Y 2

1 + λ1Y1Y3 + λ2
1Y

2
3 Y 2

2 + λ2Y2Y3 + λ2
2Y

2
3−(Y2 − λ2Y3) Y1 − λ1Y3

)
.

If λ= [λ1 : 1 : 0] ∈ V (f ) we set

2 This result was also proved by Kawamoto und Yoshino (cf. [13]). They proved thatM2 is
decomposable for a normal local two-dimensional domainR only if R is a cyclic quotient singularity.
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ϕλ =
(
Y1 − λ1Y2 −Y 2

3

Y3 Y 2
1 + λ1Y1Y2 + λ2

1Y
2
2

)
,

ψλ =
(
Y 2

1 + λ1Y1Y2 + λ2
1Y

2
2 Y 2

3−Y3 Y1 − λ1Y2

)
.

Theorem 3.1.(ϕλ,ψλ) is a matrix factorization for allλ ∈ V (f ) and the sets
of graded MCM modulesM−1 = {Cokerϕλ | λ ∈ V (f )}, M1 = {Cokerψλ | λ ∈
V (f )} have the following properties:

(1) Every two-generated non-free graded MCMR-module is isomorphic with one
of the modules fromM1 ∪M−1.3

(2) Every two different graded MCMR-modules fromM1 ∪ M−1 are not
isomorphic.

(3) The modules fromM1 are the syzygies and also the duals of the modules
fromM−1.

(4) The modules fromM1,M−1 all have rank one.

Proof. Clearly ϕλψλ = ψλϕλ = f · 12. It is easy to see that no elementary
transformations can transformϕλ into aψλ′ for λ,λ′ ∈ V (f ). Indeed, letU be an
invertible 2× 2 matrix overk[X] andU ′ the homogeneous part ofU of degree 0,
i.e., the entries ofU ′ are the constant terms of the entries ofU . ThenU ′ is
still invertible if V = U−1, thenV ′ = (U ′)−1. If Uϕλ = ψλ′V for some points
λ,λ′ ∈ V (f ), then it follows thatU ′ϕλ = ψλ′V . Note that the degree of entry
(1,1) inU ′ϕλ is 1 but the degree of the entry(1,1) inψλ′V ′ is 2. It follows that the
entry(1,1) in U ′ϕλ is 0. Then the first row ofU ′ must be zero because the entries
of the first column ofϕλ are linearly independent overk. But this is not possible
sinceU ′ is invertible. Thus, no MCMR-module ofM1 is isomorphic with one
of M−1. The rest of (1), (2) is proved in Proposition 1.1 of [14], where, by
mistake, we forget aboutM−1 but this could be done similarly. By construction,
the modules ofM1 are the syzygies of the modules ofM−1. Since the transpose
of ϕλ is exactly

(0 1
1 0

)
ψλ
(0 1
1 0

)
we see that Cokerψλ is isomorphic with the dual of

Cokerϕλ.
Now, clearly, rank Cokerϕλ + rank Cokerψλ = 2 because we have an exact

sequence of graded modules

0→ Cokerψλ → F → Cokerϕλ → 0,

whereF is free of rank 2. So (4) holds, too.✷
Next we describe all three-generated, rank one, graded MCMR-modules.

By Corollary 1.3 of [6], we haveµ(M) � 3 rankM for all graded MCMR-

3 Note that according to our aim as isomorphism of graded modules are also allowed isomorphisms
of degree different from zero.
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modulesM. Thus, the graded MCMR-modules of rank 1 are generated by,
at most, three elements. The following lemma gives mainly the form of three-
generated, rank one, graded MCMR-modules.

Lemma 3.2.Letρ1, ρ2,w1,w2 be linear forms ofk[Y1, Y2, Y3] such that

(1) f is contained in the intersections of the ideals(ρ1, ρ2), (w1,w2) of
k[Y1, Y2, Y3];

(2) {ρ1,w1,w2}, {ρ2,w1,w2} are linearlyk-independent systems of linear forms
in k[Y1, Y2, Y3].

Then there exist linear formsa, b, c, d such that

det

( 0 ρ1 ρ2
w1 a b

w2 c d

)
= f.

Proof. By (1) there exist two degree formsη1, η2 such thatf = η1ρ1 + η2ρ2,
which are not unique. Note thatη′1 = η1 + ρ2δ, η′2 = η2 − ρ1δ satisfy also
f = η′1ρ1 + η′2ρ2 for any linear formδ. We show that for someδ there exist
a, b, c, d linear forms such that∣∣∣∣w1 b

w2 d

∣∣∣∣=−η′1 and

∣∣∣∣w1 a

w2 c

∣∣∣∣= η′2.
By (2) we have

(a) η1 = ρ2η11+w1η12+w2η13;
(b) η2 = ρ1η21+w1η22+w2η23

for some linear formsηij . If η11= η21 = 0 then we may takea =−η23, c = η22,
b = −η13, d = η12 and δ = 0 above. If not, let us sayη11 �= 0, then we may
suppose evenη11 /∈ 〈w1,w2〉 because, otherwise, we may reduce to the case
η11= 0.

Then{η11,w1,w2} is a linearlyk-independent system of linear forms and we
may express

η21= λ1η11+ λ2w1 + λ3w2 for λ1, λ2, λ3 ∈ k.
Substitutingη21 in (b) we obtain

(b’) η′2 = η2 − λ1ρ1η11=
∣∣w1 a
w2 c

∣∣.
for some linear formsa, c. Also note that (a) says that there existb, d linear forms
such that

η′1 = η1 − ρ2η11 satisfies− η′1 =
∣∣∣∣w1 b

w2 d

∣∣∣∣.
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To finish we must see thatλ1 =−1 because, then,δ =−η11 works.
We havef = η1ρ1 + η2ρ2 ≡ ρ1ρ2η11(1+ λ1) modulo〈η′1, η′2〉. As 〈η′1, η′2〉 ⊂〈w1,w2〉 we obtain(λ1+1)ρ1ρ2η11∈ (w1,w2) becausef ∈ (w1,w2) by (1). But

(w1,w2) is a prime ideal since{w1,w2} are linearlyk-independent linear forms.
By (2) and by choice ofη11 we haveρ1, ρ2, η11 /∈ (w1,w2). Then(λ1+1)ρ1ρ2η11

is not contained in(w1,w2) unlessλ1 =−1. ✷
Lemma 3.3.Letϕ1, ϕ2 be linear forms ink[Y1, Y2, Y3]. Then there exist no linear
formsa, b, c, d such that

det

( 0 ϕ1 ϕ2
ϕ1 a b

ϕ2 c d

)
= f.

Proof. If {ϕ1, ϕ2} is linearly dependent, then there are no sucha, b, c, d
becausef is irreducible. Suppose now{ϕ1, ϕ2} is linearly independent and there
exista, b, c, d as above. Thenf =−ϕ2

1d − ϕ2
2a + ϕ1ϕ2(c+ b) ∈ (ϕ2

1, ϕ1ϕ2, ϕ
2
2).

Let τ be a linear transformation sending(ϕ1, ϕ2) in (Y1, Y2), let us sayτ (Yi)= ui .
Thus,{u1, u2, u3} are linearly independent linear forms and

τ (f )= u3
1 + u3

2 + u3
3 ∈

(
Y 2

1 , Y1Y2, Y
2
2

)
.

PutY1 = Y2 = 0 in τ (f ) and we obtain
∑3
i=1 ū

3
i = 0 for ūi := ui(Y1 = Y2 = 0).

This is a contradiction sinceu1, u2, u3 are linearly independent.✷
If λ = [λ1 : λ2 : 1] is a point ofV (f ) ∈ P2

k , set ρ1λ = Y1 − λ1Y3, ρ2λ =
Y2 − λ2Y3. If λ= [λ1 : 1 : 0] ∈ V (f ), setρ1λ = Y1 − λ1Y2, ρ2λ = Y3.

Proposition 3.4.LetM be a three-generated, rank one, graded MCMR-module.
Then there existλ, ξ ∈ V (f ), λ �= ξ and some linear formsa, b, c, d such that

ϕ =
( 0 ρ1λ ρ2λ
ρ1ξ a b

ρ2ξ c d

)

and its adjoint matrixψ form a matrix factorization ofM.

Proof. As rankM = 1 every matrix factorization(ϕ′,ψ ′) of M has detϕ′ = f

(see [3, (6.4)]). It is enough to show thatϕ′ has a generalized zero, that is,
ϕ′ receives an entry zero (we may suppose in the position(1,1)) after some
elementary transformations. Indeed, thenϕ′ could be arranged in the required
form by some elementary transformations on lines 2, 3 and columns 2, 3. We
haveλ �= ξ because of Lemma 3.3. But we obtain a generalized zero forϕ′ by
applying the following theorem.
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Theorem 3.5(Eisenbud [15]).Supposea = (gij )i,j is ann× n matrix of linear
forms with no generalized zeros. Thendeta �≡ 0 mod(h1, . . . , hn−1) for any linear
formsh1, . . . , hn−1.

Back to our proof, we see that ifϕ′ would not have any generalized zeros, then
f = detϕ′ /∈ (h1, h2) for any linear forms. Butf ∈ (ρ1λ, ρ2λ) for anyλ ∈ V (f ).
Contradiction!

An elementary different proof can easily be obtained by subtracting from the
first column ofϕ′ the second column multiplied withα ∈ k and the third column
multiplied with β ∈ k (α,β to be determined). Then, in the new column, write
that the third entry is a multiple of the first one withγ . This condition gives three
equations onα,β, γ , identifying the coefficients ofY1, Y2, Y3 which finally means
a cubic monic equation inα (k is algebraically closed!). ✷
Proposition 3.6.LetM be a three-generated, rank one, graded MCMR-module
and λ, ξ ∈ V (f ), λ �= ξ , a, b, c, d,ϕ,ψ as in Proposition3.4. Then, for each
η ∈ V (f ), there existsθ ∈ V (f ), θ �= η and some linear formsa′, b′, c′, d ′ such
that

ϕ′ =
( 0 ρ1η ρ2η
ρ1θ a′ b′
ρ2θ c′ d ′

)
and its adjoint matrixψ ′ form another matrix factorization(ϕ′,ψ ′) ofM.

Proof. LetU = (uij ), V = (vij ) be invertible 3× 3 matrix overk, whereuij , vij
are parameters. After a renumeration ofY , we may supposeλ3 = ξ3 = 1. We shall
give here the proof only in the caseη3 = 1, the caseη3 = 0 being similar. We want
to findU,V such that the first line inϕ′ =UϕV −1 is (0 ρ1η ρ2η), that is, the first
line inUϕ should be(0 ρ1η ρ2η)V . Identifying the entries we obtain

u12ρ1ξ + u13ρ2ξ = ρ1ηv21+ ρ2ηv31,

u11ρ1λ + u12a + u13c= ρ1ηv22+ ρ2ηv32,

u11ρ2λ + u12b+ u13d = ρ1ηv23+ ρ2ηv33.

We should see that we are able to findU,V invertibly satisfying the above
system. Identifying the coefficients ofYi in the system we obtain 9 equations:

u12= v21, u13= v31, −u12ξ1 − u13ξ2 =−η1v21− η2v31,

u11+ u12a1 + u13c1 = v22, u12a2 + u13c2 = v32,

−λ1u11+ u12a3 + u13c3 =−η1v22− η2v32,

u12b1 + u13d1 = v23, u11+ u12b2 + u13d2 = v33,

−u11λ2 + u12b3 + u13d3 =−η1v23− η2v33,
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wherea =∑aiYi , b=∑biYi , c=∑ ciYi , ai, bi, ci ∈ k.
Eliminatevij from the system and we obtain an homogeneous system of three

equations inu11, u12, u13 whose coefficient matrixA is exactly the transpose
of ϕ, where we substituteY1 = η1, Y2 = η2, Y3 = 1. Then detA= f (η)= 0 and
so we may choose a non-zero solutionu11, u12, u13, which can be completed to
an invertible matrixU and similarlyv11, v21, v31 which can be completed to an
invertible matrixV . We may takeϕ′ to beUϕV −1 multiplied with a non-zero
element ofk. ✷

Let P0 = [−1 : 0 : 1] ∈ V (f ). For eachλ= [λ1 : λ2 : 1] ∈ V (f ), λ �= P0 set

αλ =
( 0 ρ1λ ρ2λ
Y1 + Y3 −Y2 − λ2Y3 −wY3
Y2 wY3 (−λ1 + 1)Y3 − Y1

)
,

wherew = λ2
2/(λ1 + 1). (If λ1 = −1 then we obtainλ2 = 0 sinceλ ∈ V (f )

and soλ = P0. Contradiction!) As in Proposition 3.4 we setρ1λ = Y1 − λ1Y3,
ρ2λ = Y2 − λ2Y3. If [λ1 : 1 : 0] set

αλ =
( 0 ρ1λ ρ2λ
Y1 + Y3 −λ1Y1 λ1Y1 + λ2

1Y2
Y2 Y3 − Y1 −Y1

)
,

whereρ1λ = Y1 − λ1Y2, ρ2λ = Y3 as in Proposition 3.4. Letβλ be the adjoint
matrix ofαλ.

Theorem 3.7. (αλ,βλ) is a matrix factorization for allλ ∈ V (f ), λ �= P0
and the set of three-generated MCM gradedR-modulesM0 = {Cokerαλ | λ ∈
V (f ), λ �= P0} has the following properties:

(1) the modules fromM0 have all ranks one;
(2) every two different modules fromM0 are not isomorphic;
(3) every three-generated, rank one, non-free, graded MCMR-module is isomor-

phic with one module fromM0.

Proof. Note thatαλβλ = βλαλ = f 13 because detαλ = f . By [3, (6.4)] we
obtain then rank(Cokerαλ)= 1. For (2) we suppose that there exist two invertible
matricesU,V overk of determinant 1 such thatUαλ = αξV for λ, ξ ∈ V (f )\P0.
Identifying the entries ofUαλ,αξV and the coefficients ofYi we obtain a big
system of equations. Using SINGULAR [16], we obtain in Lemma 5.1, with the
help of a computer,λ= ξ .

(3) By Proposition 3.4 given a three-generated, rank one, non-free, graded
MCM R-module there existλ, ξ ∈ V (f ), λ �= ξ , and some linear formsa, b, c, d
such that

ϕ =
( 0 ρ1λ ρ2λ
ρ1ξ a b

ρ2ξ c d

)
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and its adjoint matrix form a matrix factorization ofM. By Proposition 3.6 we
may supposeξ = P0. It is enough to show that, after elementary transformations,
ϕ will becomeαλ.

Set the following forms of degree two:

γ =
∣∣∣∣ρ1ξ a

ρ2ξ c

∣∣∣∣, δ =
∣∣∣∣ρ1ξ b

ρ2ξ d

∣∣∣∣ and

γ̄ =
∣∣∣∣ρ1ξ ā

ρ2ξ c̄

∣∣∣∣, δ̄ =
∣∣∣∣ρ1ξ b̄

ρ2ξ d̄

∣∣∣∣,
where the linear forms̄a, b̄, c̄, d̄ are given inαλ. We have−ρ1λδ+ρ2λγ = detϕ =
f = −ρ1λδ̄ + ρ2λγ̄ and it followsρ2λ(γ − γ̄ ) = ρ1λ(δ − δ̄). As {ρ1λ, ρ2λ} is a
regular sequence, we obtainγ − γ̄ = ρ1λε, δ − δ̄ = ρ2λε for a linear formε.
By constructionγ, γ̄ ∈ (ρ1ξ , ρ2ξ ) and soρ1λε ∈ (ρ1ξ , ρ2ξ ). But ρ1λ, ρ1ξ , ρ2ξ
are three linearly independent linear forms and, therefore, they form a regular
sequence ink[Y1, Y2, Y3]. It follows ε ∈ (ρ1ξ , ρ2ξ ), let us sayε = u1ρ1ξ + u2ρ2ξ
for someu1, u2 ∈ k (degree reason!).

Subtracting the first line ofϕ multiplied byu2 from the second line and adding
the first line multiplied byu1 to the third line, we obtain some newγ ′, δ′ such
that

γ ′ = γ −
∣∣∣∣ ρ1ξ −u2
ρ2ξ u1

∣∣∣∣ρ1λ = γ − ερ1λ = γ̄ and, similarly, δ′ = δ̄.

Thus we may supposeγ = γ̄ , δ = δ̄, and so∣∣∣∣ρ1ξ a − ā
ρ2ξ c− c̄

∣∣∣∣= 0,

∣∣∣∣ρ1ξ b− b̄
ρ2ξ d − d̄

∣∣∣∣= 0.

As {ρ1ξ , ρ2ξ } form a regular sequencea − ā = v1ρ1ξ , c − c̄ = v1ρ2ξ , b − b̄ =
v2ρ1ξ , d − d̄ = v2ρ2ξ for somev1, v2 ∈ k. Subtracting the first column ofϕ
multiplied with v1 from the second one, we reduce to the casea = ā, c = c̄.
Similarly, subtracting the first column ofϕ multiplied with v2 from the third one,
we reduce to the caseb= b̄, d = d̄, that is,ϕ = αλ. ✷
Theorem 3.8.The modules ofM0 ∪ {R} (see3.7) induce the bundles ofE(1,0)
and the modules ofM1,M−1 induce the bundles ofE(1,1),E(1,−1) after some
possible shifting.

Proof. It is enough to see that the graded MCMR-modules ofM1 correspond,
after a possible shifting to the bundles ofE(1,1) and conversely. Indeed, then
the graded MCMR-modules ofM−1, that is, the duals of the graded MCMR-
modules ofM1 (see Theorem 3.1(3)) must correspond after a possible shifting to
the duals of the bundles ofE(1,1), that is, to the bundles ofE(1,−1). SinceM0
consists of all rank one graded MCMR-modules which are not inM1 ∪M−1
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we conclude that the modules ofM0 must correspond, after a possible shifting
with the bundles ofE(1,0).

By [8, (II, 6.11), (II, 6.15)] any line bundle of degree one has the formOX(P )

for a pointP ∈ X. By [8, (II, 6.18)] (see also the proof of [8, (IV, 1.3)]) the
structure sheafk(P ) of the closed sub-scheme{P } of X (a skyscraper sitting
atP ) is given by an exact sequence

0→OX(−P)→OX → k(P )→ 0.

Tensoring withOX(P ) we obtain a new exact sequence

0→OX →OX(P )→ k(P )→ 0,

sinceOX(P ) is locally free of rank one, tensoring by it does not affectk(P ).
This new exact sequence is the bottom line of the following commutative

diagram with lines and columns exact:

0 O(−3)

f

O(−3)⊕O(−2)2

γ

O(−2)2

(=1 =2)

0

0 O O⊕O(−1) O(−1) 0

0 OX OX(P ) k(P ) 0

0 0 0

whereO = O
P

2
k
, the first two lines are canonically split sequences, the first and

third columns are parts of the free resolutions ofOX , respectivelyk(P ) overO
(the last one is the Koszul complex and=1, =2 are the linear forms definingP , for
instance, ifP = (λ1 : λ2 : 1) we may take=1 = Y1 − λ1Y3, =2 = Y2 − λ2Y3) and
the second column is constructed canonically. Thenγ must be given by a matrix(
f q1 q2
0 =1 =2

)
, whereqi are forms inY of degree 2.

Let MP be the graded MCMR-module corresponding toOX(P ). Tensoring
the second column withOX⊗O—see the diagram above—we obtain a corre-
sponding exact sequence

R(−3)⊕R(−2)2
τ→ R⊕R(−1)→MP → 0,

whereτ = (0 q1 q2
0 =1 =2

)
. As rankMP = 1 we see that the rows ofτ must be linearly

dependent and so
∣∣q1 q2
=1 =2

∣∣ must be a multiple off with a non-zero constantu ∈ k
by degree reason. Thus,

∣∣u−1q1 u
−1q2

=1 =2

∣∣= f and soMP
∼= CokerψP ∈M1, where

ψP is given in Theorem 3.1. ✷
Corollary 3.9. DefineM−1,M1, andM0 for R̂ = k❏Y1, Y2, Y3❑/(Y

3
1 + Y 3

2 +
Y 3

3 ) similarly by the corresponding matrix factorizations. Then, every rank one
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maximal Cohen–Macaulay module overR̂ is isomorphic to a module inM−1 ∪
M1 ∪M0 ∪ {R}.

Proof. The corollary is an immediate consequence of the fact that every reflexive
R̂-module is gradable [4, Proposition 5.23], the fact that every rank one maximal
Cohen–Macaulay module over̂R is generated by at most three elements (cf. [6,
Corollary 1.3]), and Theorems 3.1 and 3.7.✷

4. Cohen–Macaulay modules of higher rank

In this section we use Atiyah’s classification to describe the MCM of rank 2
and give an algorithm to compute the matrix factorization of modules of higher
rank.

Definition 4.1. For d = 0,±1,±2,3 let M(2, d) be the set of all isomorphic
classes of MCM overR, respectivelyR̂, corresponding to the vector bundles in
E(2, d).

The idea of the classification is now to describeM(2, d) using Lemmas 1.3,
1.4, and 1.6.

Theorem 4.2.
(1) LetM be an indecomposable graded MCM of rank2 overR, thenM(n) ∈

M(2, d) for suitablen and d , −2� d � 3. LetM be an indecomposable
MCM of rank2 overR̂, thenM ∈M(2, d) for a suitabled , −2� d � 3.

(2) M(2,0) = {(M2 ⊗ L)∗∗ | L ∈ M0} ∪ {M2}, whereM2 is given in Theo-
rem2.6.

(3)M(2,±2)= {(M2 ⊗L)∗∗ | L ∈M±1
}
.

(4)M(2,3)= {(Ω1
R(M2)⊗L

)∗∗ | L ∈M0
}∪ {Ω1

R(M2)
}

= {Ω1
R(L) | L ∈M0

} ∪ {Ω1
R(M2)

}
.

(5)M(2,±1)= {(Ω1
R(M2)⊗L

)∗∗ | L ∈M±1
}

= {(A⊗L)∗∗ |A ∈M(2,3),L ∈M±1
}
.4

Proof. (2) and (3) are immediate consequences of Atiyah’s result (Lemma 1.3)
and Theorem 3.8. The first equalities of (4) and (5) and the second equality
of (5) are consequences of Lemmas 1.6 and 1.4 and the fact that using

4 The tensor product and the reflexive hull can be computed using SINGULAR (see Section 5) and,
therefore, we can obtain all the matrix factorizations of rank 2 MCMs.
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Lemma 1.7Ω1
R(M2) ∈M(2,3). The second equality of (4) follows from the fact

that the modules inM(2,3), exceptΩ1
R(M2), are generated by three elements

(cf. Lemma 5.4). ✷
Remark 4.3.To give an explicit description of the MCMs of higher rank we again
use Atiyah’s classification and the fact that we can compute (cf. Section 5)

• Mr = Sr−1(M2)
∗∗.

• Ω1
R(E) ∈M(r, d ′) for E ∈M(s, d) with s + r generators and a suitabled ′

with d + d ′ ≡ 0(3).
• (E ⊗L)∗∗ for L ∈M1 ∪M−1 ∪M0.

5. Some results obtained by SINGULAR

In this section we want to give the proof for Theorem 3.7(2) and some
other useful results we obtained with the help of the computer algebra system
SINGULAR [16].

Lemma 5.1.Let

A=
( 0 y1 − ay3 y2 − by3
y1 + y3 −y2 − by3 −zy3
y2 zy3 −y1 + (−a + 1)y3

)
and

B =
( 0 y1 − cy3 y1 − dy3
y1 + y3 −y2 − dy3 −xy3
y2 xy3 −y1 + (−c+ 1)y3

)

be two matrices such thatz= b2/(a + 1), x = d2/(c+ 1), a3 + b3 + 1= 0, and
c3 + d3 + 1= 0. ThenA andB are equivalent if and only ifa = c andb = d .5

Proof. We write the conditionsUA= VB for suitable invertible matricesU,V :
let

U =
(
u1 u2 u3
u4 u5 u6
u7 u8 u9

)
, V =

(
v1 v2 v3
v4 v5 v6
v7 v8 v9

)
,

then we obtain the following system of equations:

u2 − v4 = 0, u8 + v7 = 0, u6 + v4 = 0,

u1 − v5 = 0, u7 + v8 = 0, u5 + v5 = 0,

5 Note thatA andB define modules ofM0 corresponding to the points[a : b : 1], respectively
[c : d : 1].
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u3 − v6 = 0, u9 − v9 = 0, u4 + v6 = 0,

u5 − v1 = 0, u3 − v7 = 0, u9 − v1 = 0,

u4 − v2 = 0, u2 + v8 = 0, u8 + v2 = 0,

u6 + v3 = 0, u1 − v9 = 0, u7 − v3 = 0,

u2 + cv4 + dv7 = 0,

au1 + bu2 −wu3 − cv5 − dv8 = 0,

bu1 +wu2 + au3 − u4 − cv6 − dv9 = 0,

u5 − v1 + dv4 + xv7 = 0,

au4 + bu5 −wu6 + v2 − dv3 − xv8 = 0,

bu4 +wu5 + au6 − u6 + v3 − dv6 − xv9 = 0,

u8 − xv4 + cv7 − v7 = 0,

au7 + bu8 −wu9 + xv5 − cv8 + v8 = 0,

bu7 +wu8 + au9 − u9 + xv6 − cv9 + v9 = 0,

det(U)− 1= 0, det(V )− 1= 0.

It is not difficult to transform this system of equations to the following equivalent
system:

b= d, a = c, c2 − c+ 1=−wd, d2 =w(c+ 1),

x =w, v3
9 = 1, v9 = v1 = v5 = u1 = u5 = u9,

u2 = u3 = u4 = u6 = u7 = u8 = v2 = v3 = v4 = v6 = v7 = v8 = 0,

which proves Lemma 5.1.
One can use SINGULAR as follows to perform the transformation of the system

above:

LIB"matrix.lib";
option(redSB);
ring R=0,(u(1..9),v(1..9),y(1..3),x,w,a,b,c,d),lp;
ideal I=c3+d3+1,

xd+c2-c+1,
xc+x-d2,
a3+b3+1,
wb+a2-a+1,
wa+w-b2;

qring Q=std(I);

matrix U[3][3]=u(1..9);
matrix V[3][3]=v(l..9);
matrix A[3][3]=0, y(1)-a*y(3), y(2)-b*y(3),

y(1)+y(3), -y(2)-b*y(3), -w*y(3),
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y(2), w*y(3), -y(1)+(-a+1)*y(3);

matrix B[3][3]=0, y(1)-c*y(3), y(2)-d*y(3),
y(1)+y(3), -y(2)-d*y(3), -x*y(3),
y(2), x*y(3), -y(1)+(-c+1)*y(3);

matrix C=U*A-B*V;

ideal I=flatten(C);
ideal I1=transpose(coeffs(I,y(l)))[2];
ideal I2=transpose(coeffs(I,y(2)))[2];
ideal I3=transpose(coeffs(I,y(3)))[2];
ideal J=I1+I2+I3+ideal(det(U)-1,det(V)-1);
ideal K=std(J);
K;

K[1]=b-d
K[2]=a-c
K[3]=w*d+c^2-c+1
K[4]=w*c+w-d^2
K[5]=x-w
K[6]=v(9)^3-1
K[7]=v(8)
K[8]=v(7)
K[9]=v(6)
K[10]=v(5)-v(9)
K[11]=v(4)
K[12]=v(3)
K[13]=v(2)
K[14]=v(1)-v(9)
K[15]=u(9)-v(9)
K[16]=u(8)
K[17]=u(7)
K[18]=u(6)
K[19]=u(5)-v(9)
K[20]=u(4)
K[21]=u(3)
K[22]=u(2)
K[23]=u(1)-v(9)

We see thatb= d anda = c. ✷
Lemma 5.2.Let

A=
( 0 y1 y2 + y3
y1 + y3 −y2 + y3 y1
y2 −y1 + y3 −y1

)
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andM the MCM corresponding toA, then(M ⊗M ⊗M)∗ ∼=R.
Let

B =
( 0 −y1 + y3 y2 − by3
y1 + y3 −y2 − by3 −b2/2y3
y2 b2/2y3 −y1

)

such thatb3 =−2 andN the MCM corresponding toB, thenN is self-dual.

Proof. First of all we give procedures to compute the reflexive hull, the tensor
product in the category of Cohen–Macaulay modules, the moduleM2 and to
check the isomorphy of two MCMs, which are generated by three or six elements.

LIB"matrix.lib";
proc reflexivHull(matrix M)
{

module N=mres(transpose(M),3)[3];
N=prune(transpose(N));
return (matrix(N));

}

proc tensorCM(matrix Phi, matrix Psi)
{

int s=nrows(Phi);
int q=nrows(Psi);
matrix A=tensor(unitmat(s),Psi);
matrix B=tensor(Phi,unitmat(q));
matrix R=concat(A,B);
return(reflexivHull(R));

}

proc M2(ideal I)
{

matrix A=syz(transpose(mres(I,3)[3]));
return (transpose (A));

}

proc isIsoCM(matrix A,matrix B)
{

def R=basering;
int n=nrows(A);
int m=n*n;
number p;

if (deg(minpoly)!=-1){p=minpoly;}
execute("ring S=("+charstr(R)+"),("+varstr(R)+",

u(1.."+string(m)+"),
v(1.."+string(m)+")),dp;");
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number p=imap(R,p);
if(deg(p)!=-l){minpoly=p;}

matrix U[n][n]=u(l..m);
matrix V[n][n]=v(1..m);
matrix A=imap(R,A);
matrix B=imap(R,B);
matrix C=U*A-B*V;
module se=syz(ideal(det(A),det(B)));
ideal I=flatten(C);
int j;
ideal J=det(U)-se[1][1],det(V)+se[1][2];
for(j=1;j<=size(I);j++)
{

J=J+transpose(coef(I[j],var(1)*var(2)*var(3)))[2];
}
int d=deg(std(J)[1]);
setring R;
if (d==0){return (0);}
return(1);

}

ring R=(0,b),(y(1..3)),(c,dp);
minpoly=b3+2;
qring S=std(y(1)^3+y(2)^3+y(3)^3);

matrix A[3][3]=0, y(1), y(2)+y(3),
y(1)+y(3), -y(2)+y(3), y(1),
y(2), -y(1)+y(3), -y(1);

matrix B[3][3]=0, y(1)-y(3), y(2)-b*y(3),
y(1)+y(3), -b*y(3)-y(2), -(b*b/2)*y(3),
y(2), (b*b/2)*y(3), -y(1);

tensorCM(A,tensorCM(A,A));
_[1,1]=0

This proves that(M ⊗M ⊗M)∗ ∼=R.

tensorCM(B,B);
_[1,1]=0

We obtain that(N ⊗N)∗ ∼=R. ✷

Lemma 5.3.LetM andN be defined as in Lemma5.2. Then the following hold:

(1) (Ω2
R(m)⊗N)∗∗ is not isomorphic toΩ2

R(m).
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(2) Ω1
R(m)

∼= (Ω1
R(M)⊗M∗)∗∗.6

(3) (Ω1
R(m)⊗N)∗∗ ∼=Ω1

R(m).
(4) 0 → R → Ω1

R(m) → 〈y2
1, y2, y3〉 → 0 is a Bourbaki exact sequence for

Ω1
R(m).

(5) Ω2
R(m) is isomorphic to the reflexive hull of the differential module ofR.

Proof.

ideal I=maxideal(1);
matrix C=M2(I);
print(C);

0, y(2), y(1), y(3)^2,
y(2), 0, y(3), -y(1)^2,
y(1), -y(3), 0, y(2)^2,
y(3)^2, y(1)^2, -y(2)^2, 0

This is the matrix corresponding toM2 =Ω2
R(m).

matrix C1=tensorCM(C,B);

This is the matrix corresponding to(M2 ⊗N)∗∗.

nrows(Cl);
6
nrows (C);
4

The module(Ω2
R(m)⊗N)∗∗ is generated by six elements. The moduleΩ2

R(m) is
generated by four elements. They cannot be isomorphic. This proves (1).

matrix D=transpose(syz(C));

D is the matrix corresponding toΩ1
R(m).

matrix E=tensorCM(D,A);

E is the matrix corresponding to(Ω1
R(m)⊗M)∗∗.

matrix F=syz(A);

F is the matrix corresponding toΩ1
R(M).

isIsoCM(F,E);
1

This proves (2).

matrix E1=tensorCM(B,E);

E1 is the matrix corresponding to(Ω1
R(m)⊗M ⊗N)∗∗.

6 M is as rank 1 module indecomposable and, therefore,Ω1
R
(M) and (Ω1

R
(M) ⊗M∗)∗∗ are

indecomposable, too. This is another proof for the fact thatΩ1
R(m) andΩ2

R(m) are indecomposable.
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isIsoCM(E1,E);
1

This proves (3).

I=y(1)^2,y(2),y(3);
matrix D1=M2(I);
E1=tensorCM(D1,A);

This is the matrix corresponding to the module defined by the Bourbaki sequence
of (4), tensorised byM.

isIsoCM(E1,E);
1

This proves (4).

ring R0=0,(y(1..3)),(c,dp);
qring q=std(y(1)^3+y(2)^3+y(3)^3);
ideal I=jacob(y(1)^3+y(2)^3+y(3)^3);

matrix E=reflexivHull(transpose(matrix(I)));

The matrix corresponding to the reflexive hull of the differential module ofR.

print(E);

0, y(3), y(2), y(1)^2,
y(3), 0, -y(1), y(2)^2,
y(2), y(1), 0, -y(3)^2,
y(1)^2, -y(2)^2, y(3)^2, 0

I=maxideal(1);
matrix C=F2(I);
matrix A=imap(R,A);

matrix E1=tensorCM(E,A);
matrix C1=tensorCM(C,A);

We tensorise both modules byM (corresponding to the matrixA) to obtain
modules generated by six elements. They are easier to compare.

isIsoCM(E1,C1);
1

This proves (5). ✷

Lemma 5.4.

(1) The MCM corresponding toM(2,0) exceptM2 are generated by six
elements.
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(2) The MCM corresponding toM(2,2),M(2,−2) are generated by four

elements.

(3) The MCM corresponding toM(2,3) exceptΩ1
R(M2) are generated by three

elements.

(4) The MCM corresponding toM(2,−1),M(2,1) are generated by five

elements.

Proof.

ring R1=(0,a),(y(1..3),b),(c,1p);
ideal I=y(1)^3+y(2)^3+y(3)^3,

a3+b3+1;

qring S1=std(I);

matrix A[2][2]=y(3)-a*y(1), y(2)^2+b*y(2)*y(1)+b^2*y(1)^2,
-(y(2)-b*y(1)), y(3)^2+a*y(1)*y(3)+a^2*y(1)^2;

matrix A1[2][2]=y(1)+y(3), y(2)^2,
-y(2), y(1)^2-y(1)*y(3)+y(3)^2;

matrix C=imap(S,C);

The matrix corresponding toM2.

matrix D=imap(S,D);

The matrix corresponding toΩ1
R(M2).

nrows(tensorCM(C,A));
4
nrows(tensorCM(transpose(A),C);
4

This proves (2).

nrows(tensorCM(D,A));
5
nrows(tensorCM(transpose(A),D));
5

This proves (4).

matrix D1=tensorCM(D,transpose(A1));
print(D1);

y(1)-y(3), 0, y(2), -y(3), y(2)^2,
0, y(1)-2*y(3), 0, -y(2), -3*y(3)^2,
0, -y(2), y(1)+y(3), 0, -y(2)*y(3),
y(3), 0, y(2), y(1), 0,
-y(2), 3*y(3), 0, y(2), y(1)^2+2*y(1)*y(3)+4*y(3)^2
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This is a special element inM(2,1). Now we use the fact thatM(2,±1) =
{(A⊗L)∗∗ |A ∈M(2,3),L ∈M±1}.
nrows (tensorCM(D1,A));
3

This proves (3).

ring R2=(0,a),(y(1..3),e,b),1p;
ideal I=y(1)^3+y(2)^3+y(3)^3,

a3+b3+1,
e*b+a2-a+1,
e*a+e-b2;

qring S2=std(I);

matrix B[3][3]=0, y(3)-a*y(1), y(2)-b*y(1),
y(3)+y(1), -b*y(1)-y(2), -e*y(1),
y(2), e*y(1), (-a+1)*y(1)-y(3);

matrix C=imap(S,C);
nrows (tensorCM(C,B));
6

This proves (1). ✷
Finally, we give the matrix factorizations forM3 andM4. Here we use the

following description of the symmetric algebra: LetA = (aij ) be them × n

presentation matrix of theR-moduleM and F1(z)
...

Fm(z)

=A
 z1
...

zn

 ;

let S := R[z1, . . . , zn]/(F1, . . . ,Fm), thenS is the symmetric algebra ofM and
Sn = {H ∈ S | H homogeneous inz, degz H = n} is thenth symmetric power
ofM. The corresponding reflexive module isSn(M)= S∗∗n . We use the following
procedure:

proc sym(matrix M,int n)
{
def R=basering;
int m=ncols(M);
string s=string(m);
number p;
int j;

if(deg(minpoly)!=-1){p=minpoly;}

execute("ring S=
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("+charstr(R)+"),("+varstr(R)+",z(1.."+s+")),dp;");
number p=imap(R,p);
if(deg(p)!=-1){minpoly=p;}
matrix M=imap(R,M);
matrix N[m][1]=z(1..m);
ideal K=z(1..m);
ideal I=flatten(M*N)*(K^(n-1));
K=K^n;
poly f=z(1);
for(j=2;j<=m;j++)
{

f=f*z(j);
}
matrix T=coeffs(I,K,f);
setring R;
matrix T=imap(S,T);
return(reflexivHull(T));

}

ring R=0,(y(1..3)),dp;
qring Q=std(y(1)^3+y(2)^3+y(3)^3);
ideal I=maxideal(1);
matrix C=M2(I);
print(sym(C,2));

0, y(1), 0, -y(2), 0, -y(3), 0,
0, -y(3), y(1), 0, 0, 0, -y(2),
0, 0, 0, y(3), -y(2), 0, y(1),
2*y(3)^2, 0, y(2), 0, y(1), 0, 0,
2*y(2)^2, 0, -y(3), 0, 0, -y(1), 0,
2*y(1)^2, 0, 0, 0, -y(3), y(2), 0,
2*y(1)*y(2)*y(3), y(2)^2, 0, y(1)^2, 0, 0, -y(3)^2

print(sym(C,3));

0, y(1), -y(2), 0, 0, 0, 0, 0, -y(3), 0,
0, 0, 0, 0, -y(2), 0, y(1), 0, 0,-2*y(3),
0, 0, 0, 0, 0, 0, -y(3),2*y(1),y(2), 0,
0, 0, 0, 0,-y(3),-2*y(2), 0, 0, y(1), 0,
y(3)^2, 0, 0, 0, 0, y(1), 0, -y(2), 0, 0,
y(2)*y(3),-y(3),0, -y(2),-y(1), 0, 0, 0, 0, 0,
y(1)*y(3),0, y(3), y(1), 0, 0, -y(2), 0, 0, 0,
y(2)^2, 0, 0, 0, 0, 0, 0, y(3), 0, y(1),
y(1)^2, 0, 0, 0, 0, -y(3), 0, 0, 0,-y(2),
0, y(2)^2,y(1)^2,-y(3)^2,0,y(1)*y(3),0,y(2)*y(3),0, 0
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