Math 535 (Spring 2020)

Homework 2

due February 26

1. On a 2-dimensional k-vector space E consider the bilinear forms b_{i} $(i=1, \ldots, 4)$ with associated Gram matrices

$$
M_{1}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right), M_{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), M_{3}=\left(\begin{array}{ll}
4 & 2 \\
2 & 3
\end{array}\right), M_{4}=\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)
$$

Decide which of the forms b_{i} are isometric ${ }^{1}$ when
i) $k=\mathbb{Q}$;
ii) $k=\mathbb{R}$;
iii) $k=\mathbb{C}$.
2. Let k be a field with $\operatorname{char}(k) \neq 2$, and E a four-dimensional k-vector space. Assume that E comes equipped with a non-degenerate symmetric bilinear form $(-,-)$ such that there exist vectors $v_{1}, v_{2}, w \in E$ with

- $(w, w)=0, w \perp v_{i}$ for $i=1,2$;
- $\left(v_{1}, v_{1}\right)=12,\left(v_{2}, v_{2}\right)=-2,\left(v_{1}, v_{2}\right)=1$.

What is the Witt normal form of E ?
3. Let $E=\mathbb{R}^{3}$ with the standard inner product. Find an orthonormal basis of eigenvectors for the matrix

$$
M=\left(\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Find a matrix B such that $B^{-1}=B^{t}$ and $B^{-1} M B$ is diagonal.

[^0]4. For a matrix A, define the exponential
$$
e^{A}:=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots
$$

Compute e^{A} for

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

5. Let V be a finite dimensional \mathbb{C}-vector space endowed with a Hermitian form h. Let $W=\operatorname{Res}_{\mathbb{C} / \mathbb{R}}(V)$, i.e. V viewed as an \mathbb{R} vector space. On W define the \mathbb{R}-bilinear forms

$$
\begin{aligned}
g(x, y) & =\operatorname{Re}(h(x, y)) \\
\omega(x, y) & =\operatorname{Im}(h(x, y))
\end{aligned}
$$

Prove that g is symmetric bilinear, while ω is alternating. Show that given g^{2}, you can recover h and ω. [Similarly, ω recovers h and g]
6. With notations as in the previous exercise. Assume that the Hermitian form h has Gram matrix

$$
\left(\begin{array}{cc}
1 & 2+3 i \\
2-3 i & 4
\end{array}\right)
$$

What are the Gram matrices for g and ω respectively?
7. Let V be a finite dimensional \mathbb{C}-vector space with Hermitian inner product and let A, B be commuting self-adjoint operators on V. Prove that A and B have a common orthonormal eigenbasis.
8. Let $A=\left(\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right)$. Find the polar decomposition of A :

$$
A=U P
$$

with U a unitary matrix and P positive definite (see Lang XV, Thm. 6.9).

[^1]
[^0]: ${ }^{1}$ Recall, $M^{\prime} \sim M$ if $M^{\prime}=B^{t} M B$ for some B

[^1]: ${ }^{2}$ and secretly the identification between V and W

