Math 535 (Spring 2020)

Homework 2

due February 26

1. On a 2-dimensional k-vector space E consider the bilinear forms b_i (i = 1, ..., 4) with associated Gram matrices

$$M_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, M_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, M_3 = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}, M_4 = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$

Decide which of the forms b_i are isometric¹ when

- i) $k = \mathbb{Q};$
- ii) $k = \mathbb{R};$
- iii) $k = \mathbb{C}$.
- 2. Let k be a field with $\operatorname{char}(k) \neq 2$, and E a four-dimensional k-vector space. Assume that E comes equipped with a non-degenerate symmetric bilinear form (-, -) such that there exist vectors $v_1, v_2, w \in E$ with
 - $(w, w) = 0, w \perp v_i \text{ for } i = 1, 2;$
 - $(v_1, v_1) = 12, (v_2, v_2) = -2, (v_1, v_2) = 1.$

What is the Witt normal form of E?

3. Let $E = \mathbb{R}^3$ with the standard inner product. Find an orthonormal basis of eigenvectors for the matrix

$$M = \begin{pmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{pmatrix}.$$

Find a matrix B such that $B^{-1} = B^t$ and $B^{-1}MB$ is diagonal.

¹Recall, $M' \sim M$ if $M' = B^t M B$ for some B

4. For a matrix A, define the exponential

$$e^A := I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Compute e^A for

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

5. Let V be a finite dimensional \mathbb{C} -vector space endowed with a Hermitian form h. Let $W = \operatorname{Res}_{\mathbb{C}/\mathbb{R}}(V)$, i.e. V viewed as an \mathbb{R} vector space. On W define the \mathbb{R} -bilinear forms

$$g(x, y) = \operatorname{Re}(h(x, y))$$

$$\omega(x, y) = \operatorname{Im}(h(x, y))$$

Prove that g is symmetric bilinear, while ω is alternating. Show that given g^2 , you can recover h and ω . [Similarly, ω recovers h and g]

6. With notations as in the previous exercise. Assume that the Hermitian form h has Gram matrix

$$\begin{pmatrix} 1 & 2+3i \\ 2-3i & 4 \end{pmatrix}$$

What are the Gram matrices for g and ω respectively?

- 7. Let V be a finite dimensional \mathbb{C} -vector space with Hermitian inner product and let A, B be commuting self-adjoint operators on V. Prove that A and B have a common orthonormal eigenbasis.
- 8. Let $A = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$. Find the polar decomposition of A:

$$A = UP$$

with U a unitary matrix and P positive definite (see Lang XV, Thm. 6.9).

 $^{^{2}\}mathrm{and}$ secretly the identification between V and W