Math 313 (Fall '09)

Homework 4

due October 8

The following exercises refer to the textbook (the seventh edition).

- Ch9: 11, 14, 25
- Ch11: 10, 12

Sample Midterm

1. Which of the following sets are subgroups of $GL(2, \mathbb{R})$:

 i) $H_1 = \{ X \in GL(2, \mathbb{R}) \mid \det X = 1 \}$;

 ii) $H_2 = \{ X \in GL(2, \mathbb{R}) \mid \det X = -1 \}$;

 iii) $H_3 = \{ X \in GL(2, \mathbb{R}) \mid \text{the entries in } X \text{ belong to } \mathbb{Z} \}$;

 iv) $H_4 = \{ X = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \}$

 Explain!

2. What are the possible order of permutations in S_7. How many permutations of order 8 and 10 respectively are in S_7? What is the number of even permutations of order 6 in S_7?

3. Classify all groups with 8 elements.

 Hint: As a first step you should list all groups with 8 elements that you know. Pay attention to the maximal order that occurs in each case. Then consider the abelian case. Finally, discuss the non-abelian case.

4. Let G be a cyclic group. Prove that

 i) any subgroup H of G is cyclic;

 ii) any factor group G/H is cyclic.

 Additionally, give an example to show that it does not suffice to know that H and G/H are cyclic, to conclude that G is cyclic.

5. Show that a group of order 33 must have an element of order 3.

6. The set $\{1, 9, 16, 22, 29, 53, 74, 79, 81\}$ is a group under multiplication modulo 91. Determine the isomorphism class of this group.