1. Let \(\ell \) be a line, and \(P \notin \ell \) a point.
 i) What is the locus of points at fixed distance \(x \) from \(P \)?
 ii) What is the locus of points at fixed distance \(y \) from \(\ell \)?
 iii) Find a point \(Q \) which is at distance \(x \) from \(P \) and distance \(y \) from \(\ell \).
 iv) How many points \(Q \) are at distance \(x \) from \(P \) and distance \(y \) from \(\ell \)? (N.B. here you should get different answers depending on the distance between \(\ell \) and \(P \))

2. Given a segment \(AB \) and a point \(M \) on this segment:
 i) Construct a point \(P \) such that \(\angle APB = 60^\circ \). What is the locus of points \(P \) with this property?
 ii) Construct a point \(P \) such that \(\angle APB = 60^\circ \) and \(PM \) is the bisector of angle \(\angle P \).

3. (This exercise tests the use of sine/cosine laws)
 1) Compute \(\sin 60^\circ \) and \(\cos 60^\circ \) (Hint: use an equilateral triangle).
 2) Given a triangle \(ABC \) such that \(\angle BAC = 60^\circ \), \(AB = 2 \), \(AC = 5 \), compute \(BC \) and then the other two angles (i.e. \(\sin \) or \(\cos \) of those angles).
 3) Decide if the angles at \(B \) and \(C \) are acute or obtuse. (Before you do any computation, which angle could be obtuse - justify)
 4) Compute the distance from \(A \) to the line \(BC \).

4. You are given segments of length \(a, b, c, \ldots \) and if needed a segment of length 1. Construct the following quantities and indicate if you need to use the unit segment.
 i) \(a\sqrt{2} \)
ii) $\sqrt{2a}$
iii) $\frac{a^2c}{br}$
iv) $\frac{1}{a} + \frac{1}{b}$
v) $\sqrt{a^2 + bc}$

5. Let $T(\vec{x}) = A\vec{x} + \vec{b}$ be an affine transformation.

 i) Give an example of affine transformation such that

 $$T\left(\begin{array}{c} 2 \\ 3 \end{array}\right) = \left(\begin{array}{c} -1 \\ 2 \end{array}\right)$$

 ii) List all affine transformations that preserve the origin and the y-axis.

 iii) Prove that an affine transformation that preserves both the x-axis and y-axis, preserves also the origin. List all such transformations.

 iv) Find an affine transformation T that transforms the triangle with vertices $A = \left(\begin{array}{c} 2 \\ 3 \end{array}\right)$, $B = \left(\begin{array}{c} 4 \\ 3 \end{array}\right)$, $C = \left(\begin{array}{c} 4 \\ 6 \end{array}\right)$ into the standard triangle (vertices $\left(\begin{array}{c} 0 \\ 0 \end{array}\right)$, $\left(\begin{array}{c} 1 \\ 0 \end{array}\right)$, $\left(\begin{array}{c} 0 \\ 1 \end{array}\right)$).

6. Prove using affine geometry that the medians in a triangle meet in a single point.