MULTIVARIABLE CALCULUS

ROBERT HOUGH

Problem 1. Let $0<a<b$ and $t_{i} \geqslant 0, i=1,2, \ldots, n$. Prove that for any $x_{1}, x_{2}, \ldots, x_{n} \in$ [a, b],

$$
\left(\sum_{i=1}^{n} t_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{t_{i}}{x_{i}}\right) \leqslant \frac{(a+b)^{2}}{4 a b}\left(\sum_{i=1}^{n} t_{i}\right)^{2} .
$$

Problem 2. Let $0<x_{i}<\pi, i=1,2, \ldots, n$, and set $x=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$. Prove that

$$
\prod_{i=1}^{n}\left(\frac{\sin x_{i}}{x_{i}}\right) \leqslant\left(\frac{\sin x}{x}\right)^{n}
$$

Problem 3. Compute

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x
$$

Calculate

$$
\lim _{n \rightarrow \infty}\left[\frac{2 \cdot 4 \cdot 6 \cdots 2 n}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}\right] \cdot \frac{1}{n}=\pi
$$

Problem 4. Compute

$$
\lim _{n \rightarrow \infty}\left(\frac{2^{\frac{1}{n}}}{n+1}+\frac{2^{\frac{2}{n}}}{n+\frac{1}{2}}+\cdots+\frac{2^{\frac{n}{n}}}{n+\frac{1}{n}}\right) .
$$

Problem 5. Prove that for any real x the series

$$
1+\frac{x^{4}}{4!}+\frac{x^{8}}{8!}+\frac{x^{12}}{12!}+\ldots
$$

is convergent and find its limit.
Problem 6. Prove that if the function $u(x, t)$ satisfies the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad(x, t) \in \mathbb{R}^{2},
$$

then so does the function

$$
v(x, t)=\frac{1}{\sqrt{t}} u\left(x t^{-1},-t^{-1}\right), \quad x \in \mathbb{R}, t>0
$$

Problem 7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function with continuous partial derivatives and with $f(0,0)=0$. Prove that there exist continuous functions $g_{1}, g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
f(x, y)=x g_{1}(x, y)+y g_{2}(x, y) .
$$

Problem 8. Calculate the integral of the function

$$
f(x, y, z)=\frac{x^{4}+2 y^{4}}{x^{4}+4 y^{4}+z^{4}}
$$

over the ball $B=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leqslant 1\right\}$.

Problem 9. Assume that a curve $(x(t), y(t))$ runs counterclockwise around a region D. Prove that the area of D is given by the formula

$$
A=\frac{1}{2} \oint_{\partial D}\left(x y^{\prime}-y x^{\prime}\right) d t
$$

Problem 10. Compute

$$
\oint_{C} y^{2} d x+z^{2} d y+x^{2} d z
$$

where C is the Viviani curve, defined as the intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ with the cylinder $x^{2}+y^{2}=a x$.
Problem 11. Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be twice continuously differentiable functions that are constant along lines that pass through the origin. Prove that on the unit ball $B=$ $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leqslant 1\right\}$,

$$
\iiint_{B} f \Delta g d V=\iint_{B} g \Delta f d V
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplacian.
Problem 12. Prove Gauss's Law, which states that the total flux of a gravitational field through a closed surface equals $-4 \pi G$ times the mass enclosed by the surface, where G is the gravitational constant.
Problem 13. Let n be a positive integer. Show that the equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

admits as a particular solution an nth degree polynomial.
Problem 14. The function f has the property that

$$
|f(a)-f(b)| \leqslant|a-b|^{2}
$$

for all real a, b. Show that f is a constant.
Problem 15. If $a_{0} \geqslant a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n}>0$, prove that any root r of the polynomial

$$
P(z) \equiv a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}
$$

satisfies $|r| \leqslant 1$.
Problem 16. Does there exist a continuous function $y=f(x)$, defined for all real x, whose graph intersects every non-vertical line in infinitely many points?

Problem 17. Is there a function f, differentiable for all real x, such that

$$
|f(x)|<2, \quad f(x) f^{\prime}(x) \geqslant \sin x ?
$$

Problem 18. Does the Maclaurin series for $e^{x-x^{3}}$ have any zero coefficients?
Problem 19. A function $f(x) \in C^{\infty}[0, \infty)$ is called completely monotonic if $\left(-\frac{d}{d x}\right)^{k} f(x) \geqslant 0$ for all $k=0,1,2, \ldots$ and all $x \geqslant 0$. These functions form a convex cone. Prove that the functions $\alpha e^{-\beta x}, \alpha, \beta \geqslant 0$ are extreme points.
Problem 20. A function $f(x) \in C[0, \infty)$ is called slow if $f(x+a)-f(x) \rightarrow 0$ as $x \rightarrow \infty$ for each fixed a. Prove that a slow function can be written as the sum $g(x)+h(x)$, where $g(x) \rightarrow 0$ and $h^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.

Problem 21. $f(x)$ is continuous on $[0, \infty)$, and is such that, for each fixed $a>0, f(n a) \rightarrow$ 0 . Must $f(x) \rightarrow 0$ as $x \rightarrow \infty$?
Problem 22. Show that $f(x) \in C^{1}[a, b]$ iff the limit as $h \rightarrow 0$ of $(f(x+h)-f(x)) / h$ exists uniformly on $[a, b]$.
Problem 23. Let $f(x) \in C^{2}$. Show that if $f(x)$ and $f^{\prime \prime}(x)$ are bounded, then $f^{\prime}(x)$ is.
Problem 24. Given that $f(x)+f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$, prove that both $f(x) \rightarrow 0$ and $f^{\prime}(x) \rightarrow 0$.
Problem 25. $\sin \sin \sin \sin \ldots \sin (\pi / 2)$ (n interates) approaches 0 as $n \rightarrow \infty$. Obtain a rate.

