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To prove a statement P pnq for all positive integers n by induction, prove that P p1q is
true, and prove that P pnq implies P pn` 1q. Consider the following example:

Theorem 1. Every integer n ě 1 can be written Fk1 ` Fk2 ` ¨ ¨ ¨ ` Fkr where the Fi are
Fibonacci numbers and ki ě ki`1 ` 2.

Proof. Base case: 1 is a Fibonacci number.
Inductive step: Assume by induction that n ě 1 has a representation Fk1`Fk2`¨ ¨ ¨`Fkr

as above. Then n ` 1 “ Fk1 ` Fk2 ` ¨ ¨ ¨ ` Fkr ` 1. If Fkr ě 3 we are done, since 1 is a
Fibonacci number. If Fkr is 1 or 2, replace Fkr with Fkr ` 1 “ Fkr`1, which is again a
Fibonacci number. It may now be the case that kr ` 1 “ kr´1 ´ 1. If this is the case,
replace Fkr`1 ` Fkr´1 with Fkr´1`1. Continue doing so until it is no longer possible to
replace the last two terms with their sum. �

The pigeonhole principle states that a function f : S Ñ T from a finite set S to a finite
set T with |S| ą |T | has some t P T with |f´1ptq| ě 2.

Theorem 2. There are integers a, b, c, each of absolute value less than 1 million, such
that such that |a` b

?
2` c

?
3| ă 10´11.

Proof. Let S be the set of 1018 real numbers a` b
?

2` c
?

3 with 0 ď a, b, c,ă 106. These
numbers are all in the interval r0, p1`

?
2`

?
3q106s. Partition this interval into 1018´ 1

equal size subintervals, each of length p1`
?
2`
?
3q106

1018´1
ă 10´11. By the pigeonhole principle,

two members of S lie in the same interval, and their difference gives the claimed sum. �

When trying to prove a theorem, it can help to consider the extreme case. Consider
the following example.

Theorem 3. It is not possible to partition a cube into finitely many smaller cubes of
distinct sizes.

Proof. Suppose for contradiction that such a partition exists. Consider the bottom face
of the dissected cube, which is a square dissected into smaller squares of differing edge
length. Pick the smallest of these. It is easy to see that this square may not touch an
edge, by considering the squares adjacent to it. Thus the square is surrounded on each
side by squares of larger side length. Consider the cube which has this square as a bottom
square. The top face of this cube is again partitioned into smaller squares. The argument
can then be repeated ad absurdum, since the smallest cube above a square never reaches
the top. �

Problem 1. Prove that for each n ě 2, there exists k P N such that k can be written as a
sum of i non-zero squares for each 2 ď i ď n.

Problem 2. Prove for all positive integers the identity

1

n` 1
`

1

n` 2
` ¨ ¨ ¨ `

1

2n
“ 1´

1

2
`

1

3
´ ¨ ¨ ¨ `

1

2n´ 1
´

1

2n
.

Problem 3. Prove that | sinnx| ď n| sinx| for any real number x and positive integer n.
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Problem 4. Prove that for any positive integer n there exists an n-digit number

(1) divisible by 2n and containing only the digits 2 and 3,
(2) divisible by 5n and containing only the digits 5, 6, 7, 8, 9.

Problem 5. Given a sequence of integers x1, x2, ..., xn whose sum is 1, prove that exactly
one of the cyclic shifts

x1, x2, ..., xn; x2, x3, ..., xn, x1; ...; xn, x1, ..., xn´1

has all of its partial sums positive.

Problem 6. The vertices of a convex polygon are colored by at least three colors such that
no two consecutive vertices have the same color. Prove that one can dissect the polygon
into triangles by diagonals that do not cross and whose endpoints have different colors.

Problem 7. Show that if a1, ..., an are non-negative numbers, then

p1` a1qp1` a2q ¨ ¨ ¨ p1` anq ě p1` pa1...anq
1
n q
n.

Problem 8. A sequence of m positive integers contains exactly n distinct terms. Prove
that if 2n ď m then there exists a block of consecutive terms whose product is a perfect
square.

Problem 9. Let p be prime and let a, b, c be integers such that a and b are not divisible
by p. Prove that ax2 ` by2 ” c mod p has integer solutions.

Problem 10. A chess player trains by playing at least one game per day, but, to avoid
exhaustion, no more than 12 games a week. Prove that there is a group of consecutive
days in which he plays exactly 20 games.

Problem 11. Let x1, x2, ..., xk be real numbers such that the set A “ tcospnπx1q `
cospnπx2q ` ¨ ¨ ¨ ` cospnπxkq|n ě 1u is finite. Prove that the xi are all rational.

Problem 12. Given 21 points in the plane, no three on a line, draw the lines connecting
two points. Prove that two intersect making an angle of less than 1 degree.

Problem 13. The points of the plane are colored by finitely many colors. Prove that one
can find a rectangle with vertices of the same color.

Problem 14. Given n ě 3 points in the plane, prove that some three of them form an
angle less than or equal to π

n
.

Problem 15. Consider a planar region of area 1, obtained as the union of finitely many
disks. Prove that from these disks we can select some that are mutually disjoint and have
total area at least 1

9
.

Problem 16. Prove that among any eight distinct positive integers less than 2004 there
are four, say a, b, c and d, such that

4` d ď a` b` c ď 4d.

Problem 17. Let a1, a2, ..., an, ... be a sequence of distinct positive integers. Prove that
for any positive integer n,

a21 ` ...` a
2
n ě

2n` 1

3
pa1 ` ...` anq.

Problem 18. The positive integers are colored by two colors. Prove that there exists
an infinite sequence of positive integers k1 ă k2 ă k3 ă ... with the property that
2k1 ă k1 ` k2 ă 2k2 ă k2 ` k3 ă ... all have the same color.


