Definition

Let X be a random variable on a probability space $(\Omega, \mathcal{F}_0, \text{Prob})$ satisfying $E[|X|] < \infty$ and let \mathcal{F} be a σ-algebra, $\mathcal{F} \subset \mathcal{F}_0$. The conditional expectation of X given \mathcal{F}, $E[X|\mathcal{F}]$ is any random variable Y such that

1. $Y \in \mathcal{F}$, that is, is \mathcal{F} measurable

2. For all $A \in \mathcal{F}$, $\int_A XdP = \int_A YdP$.
Lemma

If Y is a conditional expectation of integrable variable X then Y is integrable.

Proof.

Let $A = \{ Y > 0 \} \in \mathscr{F}$. Then

$$
\int_A YdP = \int_A XdP \leq \int_A |X|dP
$$

$$
\int_{A^c} -YdP = \int_{A^c} -XdP \leq \int_{A^c} |X|dP.
$$

Thus $E[|Y|] \leq E[|X|]$.

Lemma

Let \(X \) be an integrable random variable on probability space \((\Omega, \mathcal{F}_0, \text{Prob})\), with \(\sigma \)-field \(\mathcal{F} \subset \mathcal{F}_0 \), and let \(Y \) and \(Y' \) be two conditional expectations of \(X \) given \(\mathcal{F} \). Then \(Y = Y' \) \(\mathcal{F} \)-a.s.
Proof.

For each set $A \in \mathcal{F}$, $\int_A YdP = \int_A Y'dP$. Given $\epsilon > 0$, let $A = \{Y - Y' \geq \epsilon\}$. One finds

$$0 = \int_A X - XdP = \int_A Y - Y'dP \geq \epsilon \text{Prob}(A).$$
Let X be an integrable random variable on probability space $(\Omega, \mathcal{F}_0, \text{Prob})$, and let $\mathcal{F} \subseteq \mathcal{F}_0$ be a σ-algebra. Then there exists $Y = \mathbb{E}[X|\mathcal{F}]$.
Proof.

- By splitting X into its positive and negative parts, we may assume that $X \geq 0$.
- Let $\mu = \text{Prob}$ and let ν be the measure on \mathcal{F} defined by

 $$\nu(A) = \int_A XdP, \quad A \in \mathcal{F}.$$

- By the definition of the integral, $\nu \ll \mu$.
- Let $Y = \frac{d\nu}{d\mu}$ be the Radon-Nikodym derivative of ν with respect to μ, which is \mathcal{F}-measurable. We have, for $A \in \mathcal{F}$,

 $$\int_A XdP = \nu(A) = \int_A YdP.$$

Stein’s method of Poisson Approximation

- Stein has given a general method of proving limit theorems via a perturbative method which avoids the use of characteristic functions and handles dependence.

- The following discussion of Poisson Approximation is based on the article ‘Two moments suffice for Poisson approximations: the Chen-Stein method’ by R. Arratia, L. Goldstein, L. Gordon.
Set-up

- Let \(I \) be an arbitrary index set, and for \(\alpha \in I \), let \(X_\alpha \) be a Bernoulli random variable with

\[
p_\alpha = \text{Prob}(X_\alpha = 1) = 1 - \text{Prob}(X_\alpha = 0) > 0.
\]

- Set

\[
W = \sum_{\alpha \in I} X_\alpha, \quad \lambda = \mathbb{E}[W] = \sum_{\alpha \in I} p_\alpha, \quad \lambda \in (0, \infty).
\]
For $\alpha \in I$, let $B_\alpha \subset I$, $\alpha \in B_\alpha$ be a ‘neighborhood of dependence.’

Set

\[
b_1 = \sum_{\alpha \in I} \sum_{\beta \in B_\alpha} p_\alpha p_\beta
\]

\[
b_2 = \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_\alpha} p_{\alpha \beta}, \quad p_{\alpha \beta} = E[X_\alpha X_\beta]
\]

\[
b_3 = \sum_{\alpha \in I} s_\alpha.
\]

\[
s_\alpha = E \left[\left\| E \left[X_\alpha - p_\alpha \right| \sigma \left(X_\beta : \beta \in I - B_\alpha \right) \right| \right].
\]
Recall the definition of the total variation norm.

Definition

If Z, W are two $\mathbb{Z}_{\geq 0}$ valued random variables with distributions (laws) $\mathcal{L}(Z), \mathcal{L}(W)$. The total variation distance between $\mathcal{L}(Z)$ and $\mathcal{L}(W)$ is

\[
\|\mathcal{L}(Z) - \mathcal{L}(W)\|_{TV} = \frac{1}{2} \sup_{\|h\|_{\infty} = 1} |E[h(W)] - E[h(Z)]| = \sup_{A \subset \mathbb{Z}^+} |\text{Prob}(W \in A) - \text{Prob}(Z \in A)|.
\]
The following theorem is due to Chen.

Theorem

Let W be the number of occurrences of dependent events, and let b_1, b_2, b_3 be as in the set-up. Let Z be a Poisson(λ) random variable. Then

$$\| \mathcal{L}(W) - \mathcal{L}(Z) \|_{TV} \leq b_1 + b_2 + b_3.$$
Stein’s operators

Let λ be a parameter, let $Z \sim \text{Poisson}(\lambda)$ and define linear operators S, T on functions on $\mathbb{Z}_{\geq 0}$ by

$$Tf(w) = wf(w) - \lambda f(w + 1)$$

$$Sf(w + 1) = -\frac{E[f(Z)1(Z \leq w)]}{\lambda \text{Prob}(Z = w)}, \quad Sf(0) = 0.$$
Stein’s operators

Lemma

T and S are inverse, in the sense that $TSf = f$.
Stein’s operators

Proof.

We have, for $x \neq 0$,

$$TSf(x) = xSf(x) - \lambda Sf(x + 1)$$

$$= xSf(x) + \frac{E[h(Z\mathbf{1}_{(Z \leq x)})]}{\text{Prob}(Z = x)}$$

$$= -\frac{x E[f(Z) \mathbf{1}_{(Z \leq x - 1)}]}{\lambda \text{Prob}(Z = x - 1)} + \frac{E[f(Z) \mathbf{1}_{(Z \leq x)}]}{\text{Prob}(Z = x)}$$

$$= f(x)$$

For $x = 0$, $xSf(x) = 0$, the result is the same. \square
Lemma

Let λ be a parameter, and let Z be a $\mathbb{Z}_{\geq 0}$ valued random variable. $Z \sim \text{Poisson}(\lambda)$ if and only if for all bounded f,

$$E[Tf(Z)] = 0.$$
Stein’s criterion

Proof.

- To check the necessity, write

\[
E[Tf(Z)] = e^{-\lambda} \sum_{n \geq 0} Tf(n) \frac{\lambda^n}{n!}
\]

\[
= e^{-\lambda} \sum_{n \geq 0} (nf(n) - \lambda f(n + 1)) \frac{\lambda^n}{n!}
\]

\[
= e^{-\lambda} \sum_{n \geq 1} (f(n) - f(n)) \frac{\lambda^n}{(n-1)!} = 0.
\]
Stein’s criterion

Proof.

To prove the sufficiency, set \(f(x) = 1_{(x=n)} \) for \(n = 1, 2, \ldots \) to obtain

\[
\text{Prob}(Z = n - 1) = \frac{n}{\lambda} \text{Prob}(Z = n).
\]

The result follows.
Define $\Delta f(n) = f(n + 1) - f(n)$.

Lemma

Suppose that $\forall w \geq 0$, $h(w) \in [0, 1]$ and $f = S(h(\cdot) - \mathbb{E}[h(Z)])$. Then

$$\|\Delta f\|_\infty \leq \frac{1 - e^{-\lambda}}{\lambda} \quad \text{and} \quad \|f\|_\infty \leq \min \left(1, \frac{1.4}{\lambda^{1/2}}\right).$$

Furthermore, if $h(w) = 1(w = 0) - e^{-\lambda}$ then $\|f\|_\infty = \frac{1 - e^{-\lambda}}{\lambda}$.
Bounding the Stein operator

Proof.

Observe

\[
f(m + 1) = \frac{E[h(Z)] \text{Prob}(Z \leq m)}{\lambda \text{Prob}(Z = m)} - \frac{E[h(Z)1(Z \leq m)]}{\lambda \text{Prob}(Z = m)}
\]

\[
= \frac{E[h(Z)1(Z > m)] \text{Prob}(Z \leq m)}{\lambda \text{Prob}(Z = m)}
\]

\[
- \frac{E[h(Z)1(Z \leq m)] \text{Prob}(Z > m)}{\lambda \text{Prob}(Z = m)}.
\]

Hence \(|f(m + 1)| \leq \frac{\text{Prob}(Z \leq m) \text{Prob}(Z > m)}{\lambda \text{Prob}(Z = m)}|.

\]
Proof.

For $m < \lambda$,

$$|f(m + 1)| \leq \frac{\text{Prob}(Z \leq m)}{\lambda \text{Prob}(Z = m)} = \frac{1}{\lambda} \sum_{j=0}^{m} \frac{m!}{\lambda^j (m - j)!}$$

$$\leq \frac{1}{\lambda} \sum_{j=0}^{m} \left(\frac{m}{\lambda} \right)^j \leq (\lambda - m)^{-1}.$$

Hence $|f(m)| \leq 1$ if $m \leq \lambda$.
Bounding the Stein operator

Proof.

- For $m \geq \lambda - 3$

$$|f(m + 1)| \leq \frac{\text{Prob}(Z > m)}{\lambda \text{Prob}(Z = m)} = \sum_{j=0}^{\infty} \frac{\lambda^j m!}{(m + 1 + j)!}$$

$$\leq \frac{1}{m + 1} \left[1 + \frac{\lambda}{m + 2} \sum_{j=0}^{\infty} \left(\frac{\lambda}{m + 3} \right)^j \right]$$

$$= \frac{(m + 2)(m + 3) + \lambda}{(m + 1)(m + 2)(m + 3 - \lambda)}.$$

This restricts bounding $|f(m)| < 1$ to a finite check, which we’ll ignore.
Bounding the Stein operator

Proof.

Using \(\Pr(Z \leq m) \Pr(Z > m) \leq \frac{1}{4} \) and Stirling’s approximation

\[
|f(m + 1)| \leq \frac{1}{4\lambda \Pr(Z = m)}
\]

\[
\leq \frac{\sqrt{2\pi}}{4\lambda^{\frac{1}{2}}} \left(\frac{m}{\lambda} \right)^{m + \frac{1}{2}} \exp \left(\lambda - m + \frac{1}{12m} \right)
\]

\[
\leq \frac{\sqrt{2\pi}}{4} \lambda^{-\frac{1}{2}} \exp \left(\frac{(m - \lambda)(m - \lambda + \frac{1}{2})}{\lambda} + \frac{1}{12m} \right).
\]

Using this for \(|\lambda - m| \leq \lambda^{\frac{1}{2}}\) and the previous inequalities otherwise obtains the bound \(|f(m + 1)| \leq \frac{c}{\lambda^{2}}.\)
Bounding the Stein operator

Proof.

- Define f_j by taking $h(x) = 1(x = j)$. Hence

$$f_j(m + 1) = \begin{cases}
\lambda^{j-m-1} \frac{m!}{j!} \text{Prob}(Z > m) & m \geq j \\
-\lambda^{j-m-1} \frac{m!}{j!} \text{Prob}(Z \leq m) & m < j
\end{cases}.$$

- One easily checks that f_j is positive and decreasing in $m \geq j + 1$ and is negative and decreasing in $m \leq j$.

- The only positive value of $f_j(m + 1) - f_j(m)$ is

$$f_j(j + 1) - f_j(j) = \frac{e^{-\lambda}}{\lambda} \left[\sum_{r=j+1}^{\infty} \frac{\lambda^r}{r!} + \sum_{r=1}^{j} \frac{\lambda^r r}{r! j} \right]$$

$$\leq \frac{e^{-\lambda}}{\lambda} (e^\lambda - 1) = \frac{1 - e^{-\lambda}}{\lambda}.$$
Bounding the Stein operator

Proof.

- Writing the general f as $f = \sum_j h(j) f_j$ proves

 $$f(m + 1) - f(m) \leq f_m(m + 1) - f_m(m) \leq \frac{1 - e^{-\lambda}}{\lambda}.$$

- This last calculation contains the claim that $\|f_0\| = \frac{1 - e^{-\lambda}}{\lambda}$ as this is the value at 1.
Proof of Stein’s Poisson approximation theorem.

- Let h be given with $\|h\|_\infty = 1$ and let $Z \sim \text{Poisson}(\lambda)$.
- Let $\overline{h}(\cdot) = h(\cdot) - \mathbb{E}[h(Z)]$, $f = S\overline{h}$ and $Tf = \overline{h}$, so

$$\mathbb{E}[Tf(W)] = \mathbb{E}[h(W) - h(Z)].$$
Proof of Stein’s Poisson approximation

Proof of Stein’s Poisson approximation theorem.

- Let \(V_\alpha = \sum_{\beta \in I - B_\alpha} X_\beta \) and \(W_\alpha = W - X_\alpha \). We have
 \[X_\alpha f(W) = X_\alpha f(W_\alpha + 1) \]
 \[f(W_\alpha + 1) - f(W + 1) = X_\alpha [f(W_\alpha + 1) - f(W_\alpha + 2)] \]

- Calculate

\[
E[h(W) - h(Z)] = E[Wf(W) - \lambda f(W + 1)]
= \sum_{\alpha \in I} E[X_\alpha f(W) - p_\alpha f(W + 1)]
= \sum_{\alpha \in I} E[p_\alpha f(W_\alpha + 1) - p_\alpha f(W + 1)]
+ \sum_{\alpha \in I} E[X_\alpha f(W_\alpha + 1) - p_\alpha f(W_\alpha + 1)]
\]
Proof of Stein’s Poisson approximation

Proof of Stein’s Poisson approximation theorem.

- Calculate further

\[
E[h(W) - h(Z)] = \sum_{\alpha \in I} E[p_{\alpha} X_{\alpha} \left(f(W_{\alpha} + 1) - f(W_{\alpha} + 2) \right)] \\
+ \sum_{\alpha \in I} E[(X_{\alpha} - p_{\alpha}) \left(f(W_{\alpha} + 1) - f(V_{\alpha} + 1) \right)] \\
+ \sum_{\alpha \in I} E[(X_{\alpha} - p_{\alpha}) f(V_{\alpha} + 1)].
\]

- The first term may be bounded by \(\|\Delta f\|_{\infty} \sum_{\alpha \in I} p_{\alpha}^2 \).
Proof of Stein’s Poisson approximation theorem.

To bound \(\sum_{\alpha \in I} E \left[(X_\alpha - p_\alpha) \left[f(W_\alpha + 1) - f(V_\alpha + 1) \right] \right] \), write \(E \left[(X_\alpha - p_\alpha) \left[f(W_\alpha + 1) - f(V_\alpha + 1) \right] \right] \) as a telescoping sum of \(|B_\alpha| - 1 \) terms of the form

\[
E \left[(X_\alpha - p_\alpha)(f(U + X_\beta) - f(U)) \right] \\
= E \left[(X_\alpha - p_\alpha)X_\beta(f(U + 1) - f(U)) \right] \\
= E[X_\alpha X_\beta \Delta f(U)] - E[p_\alpha X_\beta \Delta f(U)] \\
\leq \| \Delta f \|_\infty (p_{\alpha\beta} + p_\alpha p_\beta).
\]

Thus the second term is bounded by

\[
\| \Delta f \|_\infty \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_\alpha} (p_{\alpha\beta} + p_\alpha p_\beta).
\]
Proof of Stein’s Poisson approximation theorem.

- The third term is bounded by

\[
\left| \sum_{\alpha \in I} \mathbb{E}[(X_\alpha - p_\alpha)f(V_\alpha + 1)] \right|
\leq \| f \|_\infty \sum_{\alpha \in I} \mathbb{E} \left[\mathbb{E} \left[|X_\alpha - p_\alpha| \sum_{\beta \in I - B_\alpha} X_\beta \right] \right] = \| f \|_\infty b'_3.
\]

- This completes the proof.
A random graph problem

Example

- On the hypercube \(\{0, 1\}^n \), assume each of the \(n2^{n-1} \) edges is assigned a random direction by tossing a fair coin, and let \(W \) be the number of vertices at which all \(n \) edges point inward.

- Let \(I \) be the set of all \(2^n \) vertices, and \(X_\alpha \) the indicator that vertex \(\alpha \) has all edges pointing inward. Thus \(p_\alpha = 2^{-n} \). Set \(\lambda = 1 \), \(Z = \text{Poisson}(1) \).

- \(B_\alpha = \{ \beta : |\alpha - \beta| \leq 1 \} \).
A random graph problem

Example

- Calculate

\[b_1 = \sum_{\alpha \in I} \sum_{\beta \in B_\alpha} p_\alpha p_\beta = |I|(n + 1)2^{-2n} = \frac{n + 1}{2^n}. \]

- Calculate

\[b_2 = \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_\alpha} \mathbb{E}[X_\alpha X_\beta] = 0, \]

since the events \(\{X_\alpha = 1\} \) and \(\{X_\beta = 1\} \) are mutually exclusive.

- \(b_3 = 0 \) since \(X_\alpha \) is independent of \(\sigma(X_\beta : \beta \in I - B_\alpha) \).

- \(\|\mathcal{L}(W) - \mathcal{L}(Z)\|_{TV} \leq (n + 1)2^{-n} \).
Example

- Suppose \(n \) balls (people) are uniformly and independently distributed into \(d \) boxes (days of the year). We seek an estimate for the probability that at least one box contains \(k \) or more balls for \(k = 2, 3, 4, ..., \).

- Let \(I = \{ \alpha \subset \{1, 2, 3, ..., n\} : |\alpha| = k \} \), and let \(X_\alpha \) be the event that each ball in \(\alpha \) goes into the same box.

- Set \(W = \sum_{\alpha \in I} X_\alpha \), \(p_\alpha = \operatorname{Prob}(X_\alpha = 1) = d^{1-k} \), \(\lambda = \binom{n}{k} d^{1-k} \), and \(Z \sim \text{Poisson}(\lambda) \).

- The goal is to approximate \(W \Rightarrow Z \) as \(n \to \infty \). To do so, we assume that \(\lambda \) is held essentially fixed, so that \(d \approx n^{\frac{k}{k-1}} \) as \(n \to \infty \).
The birthday problem

Example

- \(B_\alpha = \{ \beta \in I : \alpha \cap \beta \neq \emptyset \} \). Hence \(X_\alpha \) is independent of \(\sigma(X_\beta : \beta \in B_\alpha) \), so \(b_3 = 0 \).

- One has \(|B_\alpha| = \binom{n}{k} - \binom{n-k}{k} \), so

\[
b_1 = p_\alpha^2 |I||B_\alpha| = \lambda^2 \frac{|B_\alpha|}{|I|} = \lambda^2 \left(1 - \frac{n-k}{n} \frac{n-k-1}{n-1} \cdots \frac{n-2k+1}{n-k+1} \right) < \lambda^2 \left(1 - \left(1 - \frac{k^2}{n-k+1} \right) \right) = \frac{\lambda^2 k^2}{n-k+1}.
\]

- For \(\lambda \) and \(k \) fixed, this tends to 0 with increasing \(n \).
The birthday problem

Example

- For fixed α,

$$
\sum_{\beta \in B_\alpha \setminus \{\alpha\}} \mathbb{E}[X_\alpha X_\beta] = \sum_{j=1}^{k-1} \binom{k}{j} \binom{n-k}{k-j} d^{1+j-2k}.
$$

When $\frac{d}{n}$ is large, the dominant term comes from $j = k - 1$, so that

$$
b_2 \lesssim k \binom{n}{k} (n-k) d^{-k} = k \lambda \frac{n-k}{d}.
$$

- Recalling $d \asymp n^{\frac{k}{k-1}}$, $b_2 \to 0$.
The longest perfect head run

Example

- Let $0 < p < 1$ and Y_1, Y_2, \ldots be an i.i.d. sequence
 $p = \text{Prob}(Y_i = 1) = 1 - \text{Prob}(Y_i = 0)$.
- Let R_n be the length of the longest consecutive run of heads starting within the first n tosses.
- Let $I = \{1, 2, \ldots, n\}$.
- Fix positive integer t and set $X_1 = Y_1 Y_2 \cdots Y_t$, and for $2 \leq \alpha \leq n$,
 \[X_\alpha = (1 - Y_{\alpha-1}) Y_\alpha Y_{\alpha+1} \cdots Y_{\alpha+t-1}. \]
The longest perfect head run

Example

- Let \(B_\alpha = \{ \beta \in I : |\alpha - \beta| \leq t \} \).
- One has \(b_3 = 0 \) by independence, and \(b_2 = 0 \), since for \(\beta \neq \alpha \), \(\beta \in B_\alpha \), the events \(\{X_\alpha = 1\} \) and \(\{X_\beta = 1\} \) are exclusive.
- We have
 \[
 b_1 < p^{2t} (1 + 2t(1 - p)) + n(2t + 1)p^{2t}(1 - p)^2
 \]
 and
 \[
 \lambda = \lambda(n, t) = E[W] = p^t [(n - 1)(1 - p) + 1].
 \]
- Since \(\{R_n < t\} = \{W = 0\} \), with \(Z \sim \text{Poisson}(\lambda) \)
 \[
 \left| \text{Prob}(R_n < t) - e^{-\lambda(n,t)} \right| \leq \|W - Z\|_{TV} \leq b_1 \min(1, \lambda^{-1}).
 \]
 Keeping \(\lambda \) fixed as \(n \to \infty \), \(b_1 \to 0 \).
Our discussion of Stein’s method of normal approximation is taken from Stein’s 1986 monograph “Approximate computation of expectations.” For the remainder of the lecture Z is a standard normal random variable.
Stein’s operators

- Let \mathcal{X} be the space of all piecewise continuous $h : \mathbb{R} \to \mathbb{R}$ such that, for all $k > 0$
 \[
 \int_{-\infty}^{\infty} |x|^k |h(x)| e^{-\frac{x^2}{2}} \, dx < \infty.
 \]

- Let \mathcal{F} be the space of all continuous and piecewise continuously differentiable $f : \mathbb{R} \to \mathbb{R}$ with $f' \in \mathcal{X}$.

- Define operators $T : \mathcal{F} \to \mathcal{X}$, $Tf(w) = f'(w) - wf(w)$ and $U : \mathcal{X} \to \mathcal{F}$,
 \[
 Uh(w) = e^{\frac{w^2}{2}} \int_{-\infty}^{w} [h(x) - \mathbb{E}[h(Z)]] e^{-\frac{x^2}{2}} \, dx.
 \]
Lemma

For all $f \in \mathcal{F}$, $Tf \in \mathcal{H}$. For all $h \in \mathcal{H}$, $Uh \in \mathcal{F}$. Let Z be standard normal. For $h \in \mathcal{H}$, $T \circ Uh(w) = h(w) - \mathbb{E}[h(Z)]$.
Stein’s operators

Proof.

For \(f \in \mathcal{F} \) and \(k > 0 \),

\[
\int_{0}^{\infty} w^{k+1} |f(w) - f(0)| e^{-\frac{w^2}{2}} \, dw = \int_{0}^{\infty} w^{k+1} \left| \int_{0}^{w} f'(x) \, dx \right| e^{-\frac{w^2}{2}} \, dw
\]

\[
\leq \int_{0}^{\infty} |f'(x)| \int_{x}^{\infty} w^{k+1} e^{-\frac{w^2}{2}} \, dw \, dx
\]

\[
\leq \int_{0}^{\infty} |f'(x)| C(1 + |x|^k) e^{-\frac{x^2}{2}} \, dx < \infty.
\]

Similarly \(\int_{-\infty}^{0} |w|^{k+1} |f(w) - f(0)| e^{-\frac{w^2}{2}} \, dw < \infty \). Hence \(w \mapsto wf(w) \in \mathcal{X}^\prime \), so \(Tf \in \mathcal{X}^\prime \).
Stein’s operators

Proof.

Given \(h \in \mathcal{X} \), \(k \geq 0 \),

\[
\int_0^\infty w^{k+1} |Uh(w)| e^{-\frac{w^2}{2}} \, dw
\]

\[
\leq \int_0^\infty w^{k+1} \int_w^\infty |h(x) - E[h(Z)]| e^{-\frac{x^2}{2}} \, dx \, dw
\]

\[
= \int_0^\infty |h(x) - E[h(Z)]| \frac{x^{k+2}}{k+2} e^{-\frac{x^2}{2}} \, dx < \infty.
\]

Similarly \(\int_{-\infty}^0 |w|^{k+1} |Uh(w)| e^{-\frac{w^2}{2}} \, dw < \infty \), so that \(w \mapsto w Uh(w) \in \mathcal{X} \).
Proof.

Differentiate

\[Uh(w) = e^{\frac{w^2}{2}} \int_{-\infty}^{w} [h(x) - E[h(Z)]] e^{-\frac{x^2}{2}} \, dx \]

to obtain \((Uh)'(w) - w(Uh)(w) = h(w) - E[h(Z)]\).
Lemma

In order that the real random variable W has a standard normal distribution, it is necessary and sufficient that, for all continuous and piecewise continuously differentiable functions $f : \mathbb{R} \to \mathbb{R}$ with $E[|f'(Z)|] < \infty$, Z standard normal, we have

$$E[f'(W)] = E[Wf(W)].$$
Proof of necessity.

Let W have a standard normal distribution. Then

$$E[f'(W)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(w) e^{-\frac{w^2}{2}} \, dw$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} f'(w) \left(\int_{-\infty}^{w} (-z) e^{-\frac{z^2}{2}} \, dz \right) \, dw$$

$$+ \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f'(w) \left(\int_{w}^{\infty} ze^{-\frac{z^2}{2}} \, dz \right) \, dw$$
Stein’s method of normal approximation

Proof of necessity.

\[
\begin{align*}
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \left(\int_{z}^{0} f'(w) \, dw \right) (-z) e^{-\frac{z^2}{2}} \, dz \\
+ \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(\int_{0}^{z} f'(w) \, dw \right) ze^{-\frac{z^2}{2}} \, dz \\
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[f(z) - f(0) \right] ze^{-\frac{z^2}{2}} \, dz = \mathbb{E}[Wf(W)].
\end{align*}
\]
Proof of sufficiency.

- Given \(w_0 \in \mathbb{R} \), let \(f_{w_0} = U1(w \leq w_0) \).
- Hence
 \[
 E[f'_{w_0}(W) - Wf_{w_0}(W)] = E[1(W \leq w_0) - E[1(Z \leq w_0)]] \\
 = \text{Prob}(W \leq w_0) - \text{Prob}(Z \leq w_0).
 \]

Hence, if this is zero for all \(w_0 \) then \(W \) has a standard normal distribution.
Explicit estimates

The special functions $f_{w_0} = U_1(w \leq w_0)$ are given by

$$f_{w_0}(w) = \begin{cases} \sqrt{2\pi} e^{\frac{w^2}{2}} \Phi(w)[1 - \Phi(w_0)] & w \leq w_0 \\ \sqrt{2\pi} e^{\frac{w^2}{2}} \Phi(w_0)[1 - \Phi(w)] & w \geq w_0 \end{cases}$$

where $\Phi(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} dx$.
Explicit estimates

Lemma

The functions f_{w_0} satisfies

$$0 < f_{w_0}(w) \leq \frac{\sqrt{2\pi}}{4}, \quad |w f_{w_0}(w)| < 1, \quad |f'_{w_0}(w)| < 1$$

for all real w_0, w.

We omit this explicit calculation.
Lemma

For bounded absolutely continuous \(h : \mathbb{R} \to \mathbb{R} \),

\[
\|Uh\|_{\infty} \leq \sqrt{\frac{\pi}{2}} \|h - E[h(Z)]\|_{\infty}
\]
\[
\|Uh'\|_{\infty} \leq 2\|h - E[h(Z)]\|_{\infty}
\]
\[
\|Uh''\|_{\infty} \leq 2\|h'\|_{\infty}.
\]
Proof.

For \(w \leq 0 \),

\[
|Uh(w)| \leq \left[\sup_{x \leq 0} |h(x) - E[h(Z)]| \right] e^{\frac{w^2}{2}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} \, dx,
\]

and, for \(w \geq 0 \),

\[
|Uh(w)| \leq \left[\sup_{x \geq 0} |h(x) - E[h(Z)]| \right] e^{\frac{w^2}{2}} \int_{w}^{\infty} e^{-\frac{x^2}{2}} \, dx.
\]

The first claim follows since the maximum of \(e^{\frac{w^2}{2}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} \, dx \) in \(w \leq 0 \) is attained at 0.
Proof.

For $w \geq 0$ use

$$(Uh)'(w) = h(w) - E[h(Z)] - we^{\frac{w^2}{2}} \int_w^\infty [h(x) - E[h(Z)]] e^{-\frac{x^2}{2}} \, dx.$$

Hence

$$\sup_{w \geq 0} |(Uh)'(w)| \leq \left[\sup_{w \geq 0} |h - E[h(Z)]| \right] \left[1 + \sup_{w \geq 0} we^{\frac{w^2}{2}} \int_w^\infty e^{-\frac{x^2}{2}} \, dx \right]$$

$$\leq 2 \sup_{w \geq 0} |h - E[h(Z)]|.$$

The bound for $w \leq 0$ is similar.
Bounds for the Stein operator

Proof.

The bound for $\|(Uh)''\|_\infty$ in terms of $\|h'\|_\infty$ is a more involved computation, which we omit.
Exchangeable pairs

Definition

A pair \((X, X')\) of random variables on a probability space \((\Omega, \mathcal{B}, \text{Prob})\) is called an exchangeable pair if, for all \(B, B'\),

\[
\text{Prob}(X \in B, X' \in B') = \text{Prob}(X \in B', X' \in B).
\]
The following lemma is key.

Lemma

Let $0 < \lambda < 1$ and let (W, W') be an exchangeable pair of real random variables, such that

$$E[W'|W] = (1 - \lambda)W.$$

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function with bounded piecewise continuous derivative h'.

$$E[h(W)] = E[h(Z)] + E\left[(Uh)'(W) \left[1 - \frac{1}{2\lambda} E[(W' - W)^2|W]\right]\right] + \frac{1}{2\lambda} \int E\left[(W - W') \left(z - \frac{W + W'}{2}\right) [1(z \leq W') - 1(z \leq W)]\right] d(Uh)'(z)$$

Bob Hough

Math 639: Lecture 7

February 16, 2017 55 / 61
Stein’s method for normal approximation

Proof.

From the identity

\[0 = E \left[Wf(W) - \frac{1}{2\lambda} (W' - W)(f(W') - f(W)) \right] \]

\[= E[Wf(W) - f'(W)] + E \left[f'(W) - \frac{1}{2\lambda} (W' - W)(f(W') - f(W)) \right] \]

\[= E[h(Z)] - E[h(W)] + E[f'(W)] - \frac{1}{2\lambda} E[(W' - W)(f(W') - f(W))] \]

obtain

\[E[h(W)] = E[h(Z)] + E[f'(W)] - \frac{1}{2\lambda} E[(W - W')(f(W) - f(W'))]. \]
Proof.

Rewrite part of the last line as

\[
E \left[f'(W) - \frac{1}{2\lambda} (W' - W)(f(W') - f(W)) \right] \\
= E \left[f'(W) \left[1 - \frac{1}{2\lambda} E \left[(W' - W)^2 | W \right] \right] \right] \\
- \frac{1}{2\lambda} E \left[(W' - W) \left[f(W') - f(W) - (W' - W)f'(W) \right] \right].
\]
Stein’s method for normal approximation

Proof.
Write

\[f(W') - f(W) - (W' - W)f'(W) = \int_{W}^{W'} (W' - y)f''(y) dy \]

\[= \int (W' - y)[1(y \leq W') - 1(y \leq W)]f''(y) dy. \]

Take expectation and use the exchangeability of \(W, W' \) to obtain the claim.
Theorem

Let h be a bounded continuous function with bounded piecewise continuous derivative h'. Let W, W' as in the previous lemma. Then

$$
|E[h(W)] - E[h(Z)]| \leq \frac{1}{4\lambda} \|h'\|_{\infty} E[|W' - W|^3] \\
+ 2\|h - E[h(Z)]\|_{\infty} \sqrt{E \left[\left(1 - \frac{1}{2\lambda} E[(W' - W)^2|W] \right)^2 \right]}.
$$

and for all real w_0,

$$
|\text{Prob}(W \leq w_0) - \Phi(w_0)| \leq 2\sqrt{E \left[\left(1 - \frac{1}{2\lambda} E[(W' - W)^2|W] \right)^2 \right]} \\
+ (2\pi)^{-\frac{1}{4}} \sqrt{\frac{1}{\lambda} E[|W' - W|^3]}.
$$
Stein’s method for normal approximation

Proof.

\[
E[h(W)] - E[h(Z)] = E \left[(Uh)'(W) \left(1 - \frac{1}{2\lambda} E[(W' - W)^2 | W] \right) \right] + \\
\frac{1}{2\lambda} \int E \left[(W - W') \left(z - \frac{W + W'}{2} \right) \left[1(z \leq W') - 1(z \leq W) \right] \right] \\
\times (Uh)''(z) \, dz
\]

So

\[
\left| E[h(W)] - E[h(Z)] \right| \leq \| (Uh)' \|_{\infty} E \left[1 - \frac{1}{2\lambda} E[(W - W')^2 | W] \right] \\
+ \| (Uh)'' \|_{\infty} \frac{1}{2\lambda} E \left[\int_{\min(W, W')}^{\max(W, W')} |W - W'| \left| z - \frac{W + W'}{2} \right| \, dz \right].
\]
Proof.

Recall $\|(Uh)'\|_\infty \leq 2\|h - E[h(Z)]\|_\infty$ and $\|(Uh)''\|_\infty \leq 2\|h'\|_\infty$. Hence

$$|E[h(W)] - E[h(Z)]| \leq$$

$$2\|h - E[h(Z)]\|_\infty \sqrt{E\left[\left(1 - \frac{1}{2\lambda} E[(W - W')^2|W]\right)^2\right]}$$

$$+ 2\|h'\|_\infty \frac{1}{2\lambda} E\left[\frac{|W - W'|^3}{4}\right].$$

This proves the first bound.

To prove the second, bound $1(w \leq w_0)$ from above and below using piece-wise linear functions. We omit the details.