Math 639: Lecture 20

Hausdorff dimension

Bob Hough

April 25, 2017

Bob Hough Math 639: Lecture 20 April 25, 2017 1/64



Hausdorff dimension

This lecture follows Morters and Peres, Chapter 4.
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Minkowski dimension

Definition

Suppose E is a bounded metric space with metric p. A covering of E is a
finite or countable collection of sets

o0
Ei, B>, E3, ... with E U E;.

i=1
Define, for € > 0,
k
M(E,e) = min{k > 1 :there exists finite covering E < U &
i=1
with max|E;| < e}
1
where |A] is the diameter of the set A.
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Minkowski dimension

Definition

The lower Minkowski dimension of bounded metric space E is

log M(E
Ll
€l0 log =
and the upper Minkowski dimension is
_ log M(E
dimpyE := limsup L(l’e).
€l0 log =

When equality holds, the Minkowski dimension is

dimM E = @ME = MME.
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Minkowski dimension

Example
The Cantor set

0
Xi
C= — :x;€{0,2 0,1].
{1213, xi € { }}C[ |
If 3771 > ¢ > 37" then C may be covered by 2" intervals of length ¢ and

not fewer than 2"~2 such intervals, so that the dimension is :ggg
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Minkowski dimension

Example

Singletons have dimension 0. The set
1
/5 = {n : neN}u{O}

requires a separate interval of length L for every n such that n(n 7 > M,
so that the lower dimension is at least % The dimension is % since the
remaining part of the sequence can be covered by O(+v/M) such intervals.

Thus Minkowski dimension is not stable under countable union.
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Hausdorff dimension

Definition

For every o = 0 the a-Hausdorff content of a metric space E is defined as

o0 Q0
HX(E) = inf {Z Eil*:Ec | E,-} :
i=1 i=1

If 0 < o < B8 and H(E) = 0 then H5 (E) = 0. Define the Hausdorff
dimension of E to be

dimE =inf{a>0: 72 (E) =0} =sup{a>0:5(E) > 0}.
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Hausdorff measure

Definition

Let X be a metric space and E — X. For every a > 0 and § > 0 define

Q0 0
A2 (E) = inf {Z |Ei|*: E < | J B sup|Eil < 5} :
i=1 i=1 J

Then

HY(E) = sup H5°(E) = lim 5" (E)
§>0 410

is the a-Hausdorff measure of the set E.
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Hausdorff measure

The a-Hausdorff measure satisfies
o () =0
o ™ (U?Ozl E,-) < Y2, H*(E;) for any sequence Eq, B, E3,... © X
o HYWE)<H“(D)IfEcDcX

and thus is an outer measure.
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Hausdorff measure

Proposition

For every metric space E we have
HYNE)=0 < HAJ(E)=0

and therefore

dim E = inf{a : %(E) = 0} = inf{a : S%(E) < 0}
= sup{a : HYE) > 0} = sup{a : H(E) = w0}.
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Hausdorff measure

Proof.
o If J3(E) = c > 0 then S (E) > c for all 6 > 0.
e Conversely, if 5 (E) = 0 then for every § > 0 there is a covering
with sets of diameter at most o .
@ Letting 0 | O proves the equivalence.
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Holder continuity

Definition
Let 0 < a < 1. A function f : (Eg, p1) — (Ez, p2) between metric spaces is

called a-Holder continuous if there exists a (global) constant C > 0 such
that

p2(f(x), f(y)) < Cpi(x,y)?, Vx,y € Ei.

A constant C as above is called a Hélder constant.

If f: (E1,p1) — (Ez, p2) is surjective and a-Holder continuous with
constant C, then for any 5 > 0,

HP(B) < CPa*P(Ey)

SO dlm(Ez) < dlm(El)

1
a
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Graph and range

Definition

For a function f : A — RY, for A < [0,0), we define the graph to be
Graph(A) = {(t,f(t)) : t € A} c RIHL,

and the range or path to be

Ranges(A) = f(A) = {f(t) : t € A} c RY,
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Graph and range

Proposition

Suppose f : [0,1] — RY is an a-Hélder continuous function. Then
© dim(Graph[0,1]) <1+ (1 —a)(d A 1)
@ For any A < [0,1], we have dim Range;(A) < 9m4.
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Graph and range

Proof.

@ Since f is a-Holder continuous there is a constant C such that, if
s,t €[0,1] with |t — s| <, then |f(t) — f(s)| < Ce*.

e Cover [0,1] by no more than [%] intervals of length €. The image of
each interval is contained in a ball of diameter 2Ce®.

@ Cover each such ball by « €9~9 balls of diameter €. This results in a
cover of the graph with €9®~9~1 products of balls and intervals,
which gives part of the first bound.

o Otherwise, note that each interval of size (e/C)Y/* is mapped into a
ball of radius € in the range. The number of such balls required is
order €1/, which gives the second part of the bound.

@ The second part is similar.

Ol
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Graph and range

Corollary

For any fixed set A c [0,0) the graph of a d-dimensional Brownian
motion satisfies, a.s.

dim(Graph(A)) < { 342 Z

\\/ ||

and its range satisfies, a.s.

dim Range(A) < (2dimA) A d.

Bob Hough Math 639: Lecture 20 April 25, 2017 16 / 64



Range of Brownian motion

Theorem

Let {B(t) : t = 0} be a Brownian motion in dimension d > 2. Then
almost surely, for any set A  [0,00) we have

#?(Range(A)) = 0.
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Range of Brownian motion

Proof.

o Let Cube = [0,1)9. It suffices to show that
#?(Range[0,00) n Cube) = 0 for Brownian motion started at
x ¢ Cube. Also, we may assume that d > 3, since 2 dimensional
Brownian motion is a projection, which does not increase the
Hausdorff measure.

@ Define the occupation measure p by

(A :LOO 14(B(s))ds, AcRY Borel.

o Let Py be the collection of all cubes Hf/:l[n,Q*k, (nj +1)27%) where
ni,...,ng€{0,1,...,2k —1}.

Ol
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Range of Brownian motion

Proof.
o Fix a threshold m and let M > m. We call D € &) with k > m a big
cube if

1
w(D) = =272k,
€

@ The collection €' (M) consists of all maximal big cubes D € %,
m < k < M together with those cubes D € 9y, which are not
contained in a big cube but intersect Range[0, c0).

@ The sets of (M) are a cover of Range[0, ) n Cube with sets of
diameter at most 1/d2~™.
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Range of Brownian motion

Proof.

@ Given acube De 9y let D = Dy < Dyy—1 < ... ©€ Dy, with Dy € 9
the sequence of cubes containing D. Let Dj be the cube with the
same center as Dy and % its side length.

@ Let 7(D) be the first hitting time of cube D and

Tk = inf{t > 7(D) : B(t) ¢ D}} the first exit time from Dj}.
o Let Child = [0, 3)? and define the expanded sets Cube* and Child*.
o Define 7 = inf{t > 0: B(t) ¢ Cube®} and

T 1
q:= sup Prob, <f lcube(B(s))ds < ) <1
yeChild* 0 €
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Range of Brownian motion

Proof.
@ Using the strong Markov property

1
Prob, (M(Dk) < =272k YM > k = m|7(D) < oo>
€

Tk
< Proby (f 1p,(B(s))ds < 12—2& M > k> m‘T(D) < oo)
Tk+1 €
M-1 e 1
= 1_[ sup Prob, <2Qkf 1p,(B(s))ds < ) < gV,
0 €

k—m YEDE,

Bob Hough Math 639: Lecture 20 April 25, 2017 21 / 64



Range of Brownian motion

Proof.

@ Since Prob, (7(D) < ©) < ¢2~M(d=2) for a constant ¢ > 0 the
probability that a cube D € %), is in the cover is

1
Prob (M(Dk) < 2k M>k=m,7(D) < oo) < 2 M(d=2) gM—m

@ The 2-value of a given such cube is d272M. The number of such
cubes is 29M . Thus the expected contribution of all cubes in
€ (M) n Dy is at most cdgM—m.
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Range of Brownian motion

Proof.
@ The contribution of the remaining cubes in €' (M) n UQ/’ L9 is
bounded by
M—1 M—
Do N 1(u0)> o) < 2 u(D)
k=m De€ (M) Dy k=m De€ (M) Dy

< dep(Cube).

o Letting € | 0 and choosing M = M(e) appropriately large, both terms
are forced to 0.

Ol

v
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The mass distribution principle

Definition
We call a measure p on the Borel sets of a metric space £ a mass
distribution on E, if

0 < u(E) < o0.
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The mass distribution principle

Theorem

Suppose E is a metric space and o« = 0. If there is a mass distribution p
on E and constants C > 0 and § > 0 such that

p(V) < ClVI%,

for all closed sets VV with diameter |V/| < ¢, then

HE) = MCE) > 0,

and hence dim E > a.
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The mass distribution principle

Proof.

Suppose that Ui, Uy, ... is a cover of E by arbitrary sets with |U;| < ¢. Let
Vi be the closure of U; and note that |U;| = |V;|. We have

0 < u(E) < (G) i CZIUI“

=1

Taking the inf and letting ¢ | O gives the claim. O
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Record time

Definition
Let {B(t): t = 0} be a linear Brownian motion and {M(t) : t > 0} the
associated maximum process. A time t > 0 is a record time for the

Brownian motion if M(t) = B(t) and the set of all record times for the
Brownian motion is denoted by Rec.
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Record time

Lemma J

Almost surely, dim(Rec n[0,1]) > 3 and hence dim(Zeros n[0,1]) > 1.
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Record time

Proof.
e t+— M(t) is continuous and increasing, hence is the distribution
function of a positive measure p, with p(a, b] = M(b) — M(a).

The measure p is supported on Rec.

For a < % Brownian motion is a.s. locally a-Holder continuous

Thus there exists a constant C, such that, for all a, b € [0,1]

M(b) — M(a) < max B(a+ h)— B(a) < Cu(b—a)“.

0<h<b—a

By the mass distribution principle, a.s.
dim(Rec n[0,1]) > a.

@ The claim for Zeros follows because Y (t) = M(t) — B(t) is reflected
Brownian motion.

L]
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/Zeros

Lemma
There is an absolute constant C such that, for any a,e > 0,

Prob (there exists t € (a,a + €) with B(t) = 0)

IN

ate

Bob Hough Math 639: Lecture 20 April 25, 2017 30 / 64



/Zeros

Proof.
o Let A= {|B(a+¢€)| <+/e}. Thus

Prob(A)=Prob(|B(1)|< ‘ ><24/ c
a-+e a+e

@ Let T be the stopping time T = inf{t > a: B(t) = 0}

Prob(A) = Prob (A n {0 € Bla,a + €]})
> Prob(T <a+¢) min Prob(|B(a+ ¢)| < +/e|B(t) = 0).

ast<ate

The minimum is achieved at t = a where
Prob(|B(a + €)| < v/¢|B(a) = 0) = Prob(|B(1)| < 1)

which is a constant.
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/Zeros

Theorem

Let {B(t) : 0 < t < 1} be a linear Brownian motion. Then with probability
1 we have

dim(Zeros N[0, 1]) = dim(Rec n[0,1]) = %
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/Zeros

Proof.

@ Let Z(/) indicate that there is a zero in interval /. For any € > 0 and
sufficiently large k, the previous lemma gives

E[Z(N] < a27%?,  Vie Dl c(e,1—¢).

@ Thus the covering of {t € (¢,1 —¢) : B(t) = 0} by all | € Z with
In(e,1—¢€)# & and Z(I) = 1 has expected 1-value

/E@k IE@k
In(e,1—€)# In(e,1—€)#
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/Zeros

Proof.
e By Fatou,

Ellimi —k/2 | < limi —k/2
iminf dz()2 < lim inf E D zZ()2
IE@k IE@k

In(e,1—€) In(e,1—€)#
< c1.
o It follows that

Hi{te (e,1—¢): B(t) =0} < .

Letting € | 0, the claim follows.
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The energy method

Definition
Suppose (i is a mass distribution on a metric space (E,p) and a > 0. The
a-potential of a point x € E with respect to p is defined as

[ duly)
Palx) = f o0 y)*

The a-energy of i is

uw=f%@wwmszfﬁgﬁw'
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The energy method

Theorem (Energy method)

Let > 0 and p be a mass distribution on a metric space E. Then, for
every € > 0, we have

o p(E)?
HE(E) > \) dp(x)duly) *
px,y)<e  plxy)«

Hence, if lo (1) < oo then s#“(E) = oo and, in particular, dim E > «.
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The energy method

Proof.

o If {A,: n=1,2,...} is any disjoint covering of E with sets of

diameter at most € then

N

,y)<6 T T ANXA;,

(A
Z|A|o¢’

n=1

@ Given & > 0 choose a covering such that, additionally,

0
Z]A |* < SY(E) + 6.
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The energy method

Proof.
e By Cauchy-Schwarz,

- [0 - M(AH)Z
< HZ::]_ ‘An‘ ,;l |An’a
a du(x)du(y)
< (H°(E) + 6) ( f{ R
p(x,y)<e

@ Letting 0 | O proves the inequality, while if /,(u) < oo then
H(E) - 0ase—0.
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The dimension of Brownian motion

Theorem (Taylor 1953)

Let {B(t):0< t <1} bed- dimensional Brownian motion.
Q /fd =1, then dim Graph[0,1] = 5 a.s.
@ Ifd > 2, then dim Range[0, 1] = dim Graph|[0,1] = 2 a.s.
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The dimension of Brownian motion

Proof.
o Forl, let a < % and define a measure p on the graph by

p(A) = meas(0 < t <1:(t,B(t)) € A)

for Ac [0,1] x R a Borel set.

@ The a-energy of p is
dsdt

H \X—y\a ff (It —s]2+|B(t) — B(s)]2)?

1

@ Thus

Elo(n) < 2J0 E ((t2 + B(t)2)*%) dt.

April 25, 2017

Bob Hough Math 639: Lecture 20

40 / 64



The dimension of Brownian motion

Proof.

22
o Let p(z) = %\/;77). The expectation is

Q0
2] (2 + tz%) "2 p(2)dz.
0
Split the integral at z = 4/t to bound it by a constant times

N4 0 L 0
J t™%dz + J (tz2)~2p(z)dz = t27° + t_a/zf z %p(z)dz
0 VE =

1 1
Kt 2 4 g

@ The integral over t thus converges for o < %

Ol

v
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The dimension of Brownian motion

Proof.

@ For 2, when d > 2, let & < 2 and put the occupation measure on
Range[0, 1], so

1(A) = meas(B71(A) n [0,1])

for A< R, Borel. Thus
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The dimension of Brownian motion

Proof.
o We have
ff _ EJ J dsdt
IX—yI" o |B(t) = B(s)|*
and
o 1 o
E|B(t) — B(s)| ™ = E[(|t — s|2[B(1))~°]
_lz?
= |t — s|—a/2f <€ * 4
Re |2|*
= c(d,a)|t — s|7¥2.
@ Thus E l,(p) = CSO So |tdssc(£/2 < 2c Sé ‘Zf/’z < 0. The claim now
follows by the energy method.
[]
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Trees

Definition
A tree T = (V,E) is a connected graph with finite or countable set V' of

vertices, which includes a distinguished vertex p designated root, and a set
E c V x V of ordered edges such that

@ For every vertex v € V the set {w e V : (w, v) € E} consists of
exactly one element v, the parent, except for the root p € V, which
has no parent.

@ For every vertex v there is a unique self-avoiding path from the root
to v and the number of edges in this path is the order or generation
|v| of the vertex v € V.

@ For every v € V, the set of offspring or children of
{we V:(v,w)e E} is finite.
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Rays

Definition

@ For any v, w € V we denote v A w the furthest element from the root
common to the paths connecting (p, v) and (p, w). Write v < w if v
is an ancestor of w, which is equivalent to v = v A w.

@ Every infinite path started in the root is called a ray. The set of rays
is denoted 0T and is called the boundary of T. Given paths £ and 7,
let & A 1 be the last vertex in common, and [£ A 7| the number of
edges in common. |¢ —n| := 2~ 16~

@ A set I of edges is called a cutset if every ray includes an edge from
M.
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Flows

Definition
A capacity is a function C : E — [0,0). A flow of strength ¢ > 0 through
a tree with capacities C is a mapping 6 : E — [0, c] such that

o For the root we have > 6(p, w) = c and for every vertex v # p

O(v,v) = O(v,w),

ww=v
so that the flow into and out of each vertex other than the root is
conserved.

e O(e) < C(e), i.e. the flow through the edge e is bounded by its
capacity.

Bob Hough Math 639: Lecture 20 April 25, 2017 46 / 64



Max-flow min-cut theorem

Theorem (Max-flow min-cut theorem)
Let T be a tree with capacity C. Then

max {strength () : 6 a flow with capacities C}

= inf{Z Cle):Ma cutset}.

eell
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Max-flow min-cut theorem

Proof.
@ The LHS is a maximum by a diagonalization argument.

@ Every infinite cutset I contains a finite cutset " < . To see this,
note that otherwise it would be possible to find an infinite sequence
of rays such that the jth ray has its first j elements not in 1. An
infinite ray not meeting I is found by taking a limit.

o Let 6 be a flow with capacities C and 1 an arbitrary cutset. Let A be
the set of vertices which are connected to p by a path not meeting
the cutset. By the previous argument, this set is finite.
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Max-flow min-cut theorem

Proof.
@ Define
1 e=(v,w), somewe V
d(v,e) =X =1  e=(w,v), someweV .
0 otherwise
o We have
strength(6) = ) 6(p, e)de) = ) 3 6(v, €)6(e)
eeE veA eeE
=D 0(e) D d(v.e) < D 8(e) < ) Cle)
eeE veA eell eell
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Max-flow min-cut theorem

Proof.

@ To prove the reverse inequality, let T, denote the tree consisting of
those vertices and edges at distance at most n from the root.
@ Let I be a cutset with edges in E,
o A flow 0 of strength ¢ > 0 through T, with capacities C has the
condition
O(v,v) = O(v,w),

wiw=v

is required for vertices v # p with |v| < n.
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Max-flow min-cut theorem

Proof.

o Let 0 be a flow in T, of maximal strength ¢ with capacities C

o Call a path p = vy, vi, ..., v, an augmenting sequence if
O(vi,vit1) < C(vj, vir1). By maximality, such an augmenting
sequence does not exist.

@ Since no such path exists, there is a minimal cutset I consisting
entirely of edges in E, with f(e) = C(e).

@ We have

strength(6) = > 0(e) > ¢(v,e) = > 6(e) = Y C(e).

eeE VEA eell eell

@ The claim in general now follows by taking a limiting such sequence
0, n=1,2,...

Ol
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Frostman’'s lemma

Theorem (Frostman's lemma)

If Ac RY is a closed set such that #*(A) > 0, then there exists a Borel
probability measure 1 supported on A and a constant C > 0 such that
u(D) < C|D|* for all Borel sets D.
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Frostman’'s lemma

Proof.
o Let Ac [0,1]¢.

@ A compact cube of side length s in RY may be split into 29 compact
cubes of side length s/2.

o Create a tree with the cube [0,1]9 at the root, and each vertex having
29 edges emanating from it, leading to vertices at the 29 sub-cubes.

@ Erase edges ending in vertices associated with subcubes that do not
intersect A

@ Rays in 0T correspond to sequences of nested compact cubes
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Frostman’'s lemma

Proof.

@ There is a canonical map ¢ : 0T — A which maps sequences of
nested cubes to their intersection.

@ If x € A then there is a unique element of 0T specified by
containment at each level of the tree. Thus ® is a bijection.

@ Given edge e at level n define the capacity C(e) = (d%2*”)a.
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Frostman’'s lemma

Proof.

@ Associate to cutset 1 a covering of A consisting of those cubes
associated to the initial vertex of each edge in the cut-set. This indeed
covers A, since any ray which ends in a point a of A passes through
an edge of the cutset, so that a is contained in the associated cube.

@ Thus

inf{z Cle):Ma cutset} > inf {Z|Aj|°‘ tAcC UAJ}‘

eell
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Frostman’'s lemma

Proof.

@ Now we define a measure on A= 0T.

e Given an edge e, let T(e) denote the set of rays of 0 T which contain
e.

o Define 7(T(e)) = 6(e).

@ The collection €' (0T) of all sets T(e), together with ¥ is a
semi-algebra on 0T since if A,Be€ €(0T) then AnBe ¥(dT), and
if A€ €(0T) then A€ is a finite disjoint union of sets from € (0 T).

@ Since the flow through any vertex is preserved, ¥ is countably additive.

@ |t follows that Z may be extended to a measure v on the o-algebra
generated by € (0T).
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Frostman’'s lemma

Proof.

o Define Borel measure ;1 = v o @~ on A. Thus if C is the cube
associated to the initial vertex of edge e then u(C) = 6(e).

o Let D be a Borel subset of R? and n is the integer such that
27" < |Dn[0,1]9] < 27D,

@ Then D n [0,1]9 can be covered with at most 3¢ cubes from the
above construction of side length 27", or diameter dz2=". Thus

u(D) < d23927" < d239|D|*

so that u meets the requirements of the lemma.

O

v
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Riesz capacity

Definition
Define the Riesz a-capacity of a metric space (E, p) as
Cap,(E) := sup{/oé(u)*1 : w a mass distribution on E with p(E) = 1} .

In the case of the Euclidean space E = R with d >3 and a = d — 2 the
Riesz a-capacity is also known as the Newtonian capacity.
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Riesz capacity

Theorem

For any closed set A — R,

dim A = sup{« : Cap,(A) > 0}.
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Riesz capacity

Proof.

@ The inequality dim A > sup{a : Cap,(A) > 0} follows from the
energy method, so it remains to prove the reverse inequality.

o Suppose dim A > a, so that for some 3 > a we have #7(A) > 0.

@ By Frostman's lemma, there exists a nonzero Borel probability
measure 1 on A and a constant C such u(D) < C|D|?

@ We may assume that the support of i has diameter less than 1.
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Riesz capacity

Proof.

o Fix x e Aand for k > 1let Si(x) = {y: 2% < |x — y| < 217k}

@ We have

JR" \X—y\“ Z fk(x !X—yl‘”‘

\ C Z |22 k|ﬁ2ka —

k=1

@ Since 8 > «,

0
p) < c’ Z ok(a=p)
k=1

0
Z Sk 2ka

k=

c’ Z 2k(0<—
k=1

Bob Hough Math 639: Lecture 20

April 25, 2017

61 / 64



Dimension of Brownian motion

Theorem

Let A< [0,0) be a closed subset and {B(t) : t > 0} a d-dimensional
Brownian motion. Then, a.s.

dim B(A) = (2dim A) A d.
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Dimension of Brownian motion

Proof.
@ The upper bound has already been proven.
@ For the lower bound let o < dim(A) A (d/2).

@ By the previous theorem there exists a Borel probability measure i on
A such that I, (p) < 0.
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v
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Dimension of Brownian motion

Proof.

o Define, for D = RY Borel, ji(D) = u({t = 0: B(t) € D}). Thus

oo e[ [ S]] [ s,

@ The denominator has the same distribution as |t — s]a|Z|2a.
e Since 2a < d, E[|Z]|72%] < o0. Thus

Ela (i fj (1221 ” H5) Bl 22 () < 0.

s|0‘

fi is supported on B(A), so dim B(A) = 2a.

|
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