Brownian motion

A reference for the next several lectures is the book *Brownian motion* by Mörters and Peres, CUP, 2010.
Stochastic processes

Definition

Let \((T, d)\) be a metric space.

- By a random function or process \(X = (X_t)_{t \in T}\) indexed by \(T\) we mean a collection of real valued random variables \(X_t, t \in T\).
- By the finite dimensional distributions (f.d.d.) \(X\) we mean the collection of probability measures \(\mu_{t_1, \ldots, t_n}\) on \(\mathcal{B}^n\), indexed by \(n\) and distinct \(t_1, \ldots, t_n \in T\), where

\[
\mu_{t_1, \ldots, t_n}(B) = \text{Prob}((X_{t_1}, \ldots, X_{t_n}) \in B)
\]

for any Borel subset \(B\) of \(\mathbb{R}^n\).
Finite dimensional distributions

Definition

A collection of finite dimensional distributions is *consistent* if for any $B_k \in \mathcal{B}$ and distinct $t_k \in T$, finite n, and permutation $\pi \in S_n$

$$
\mu_{t_1, \ldots, t_n}(B_1 \times \cdots \times B_n) = \mu_{t_{\pi(1)}, \ldots, t_{\pi(n)}}(B_{\pi(1)} \times \cdots \times B_{\pi(n)}),
$$

and

$$
\mu_{t_1, \ldots, t_{n-1}}(B_1 \times \cdots \times B_{n-1}) = \mu_{t_1, \ldots, t_{n-1}, t_n}(B_1 \times \cdots \times B_{n-1} \times \mathbb{R}).
$$
Definition

Let \(\mathbb{R}^T \) denote the collection of all functions \(x(t) : T \to \mathbb{R} \). A finite dimensional measurable rectangle in \(\mathbb{R}^T \) is any set of the form \(\{ x(\cdot) : x(t_i) \in B_i, i = 1, \ldots, n \} \) for a positive integer \(n \), \(B_i \in \mathcal{B} \) and \(t_i \in T \). The cylindrical \(\sigma \)-algebra, \(\mathcal{B}^T \) is the \(\sigma \)-algebra generated by the finite dimensional cylindrical rectangles.
Finite dimensional distributions

Theorem

For any consistent collection of f.d.d., there exists a probability space $(\Omega, \mathcal{F}, \text{Prob})$ and a stochastic process $\omega \mapsto \{X_t(\omega), t \in T\}$ on it, whose f.d.d. are in agreement with the given collection. Further, the restriction of the probability measure Prob to the σ-algebra $\mathcal{F}^X = \sigma(X_t, t \in T)$ is uniquely determined by the specified f.d.d.
A random process $X = (X_t)_{t \in T}$ defined on probability space $(\Omega, \mathcal{A}, \text{Prob})$ is said to be *separable* if there exists a negligible set $N \subset \Omega$ and a countable set S in T such that, for every $\omega \notin N$, every $t \in T$, and $\epsilon > 0$,

$$X_t(\omega) \in \{X_s(\omega) : s \in S, d(s, t) < \epsilon\}.$$

This condition is met if (T, d) is separable and X is almost surely continuous.
Recall that a random variable X is normally distributed with mean μ and variance σ^2 if

$$\text{Prob}(X > x) = \frac{1}{\sqrt{2\pi}\sigma^2} \int_x^\infty e^{-\frac{(u-\mu)^2}{2\sigma^2}} \, du.$$
A random vector \((X_1, \ldots, X_n)\) is called a Gaussian random vector if there exists an \(n \times m\) matrix \(A\) and an \(n\)-dimensional vector \(b\) such that \(X^t = AY + b\) where \(Y\) is an \(m\)-dimensional vector with independent standard normal entries.
Paul Lévy’s construction

Definition

A real valued stochastic process \(\{B(t) : t \geq 0\} \) is called a \textit{(linear) Brownian motion} with start \(x \in \mathbb{R} \) if the following holds:

- \(B(0) = x \)
- For all times \(0 \leq t_1 \leq t_2 \leq \ldots \leq t_n \) the increments \(B(t_n) - B(t_{n-1}), B(t_{n-1}) - B(t_{n-2}), \ldots, B(t_2) - B(t_1) \) are independent random variables.
- For all \(t \geq 0 \) and \(h > 0 \), the increments \(B(t + h) - B(t) \) are normally distributed with mean 0 and variance \(h \).
- Almost surely, \(t \mapsto B(t) \) is continuous.

If \(x = 0 \) then \(B(t) \) is \textit{standard Brownian motion}.
Paul Lévy’s construction

Definition

We say a stochastic process \(\{X(t), t \geq 0\} \) on \((\Omega, \mathcal{A}, \text{Prob})\) has property \(X \) almost surely if there exists \(A \in \mathcal{A} \) with \(\text{Prob}(A) = 1 \) such that

\[
A \subseteq \{\omega \in \Omega : t \mapsto X(t, \omega) \text{ has property } X\}.
\]
Theorem (Wiener, 1923)

Standard Brownian motion exists.
Proof.

- We construct Brownian motion on the interval $[0, 1]$ as a random element of $C[0, 1]$, the space of continuous functions on $[0, 1]$.

- Let $\mathcal{D}_n = \left\{ \frac{k}{2^n} : 0 \leq k \leq 2^n \right\}$. We first construct the joint distribution of Brownian motion on these sets, then interpolate linearly and check that the uniform limit exists and is a Brownian motion.

- Let $\mathcal{D} = \bigcup_{n=0}^{\infty} \mathcal{D}_n$, and let $(\Omega, \mathcal{A}, \text{Prob})$ be a probability space on which a collection $\{Z_t : t \in \mathcal{D}\}$ of independent standard normals is defined.
Brownian motion

Proof.

- Define B on \mathcal{D} iteratively by $B(1) = Z_1$, and for $n \geq 1$ and $d \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$,

$$B(d) = \frac{B(d - 2^{-n}) + B(d + 2^{-n})}{2} + \frac{Z_d}{2^{n+1}}.$$

- We claim that this construction satisfies
 - For all $r < s < t$ in \mathcal{D}_n, the random variable $B(t) - B(s)$ is normally distributed with mean 0 and variance $t - s$, and is independent of $B(s) - B(r)$.
 - The vectors $\{B(d) : d \in \mathcal{D}_n\}$ and $\{Z_t : t \in \mathcal{D} \setminus \mathcal{D}_n\}$ are independent.

- The second of these properties is immediate, since $B(d)$ for $d \in \mathcal{D}_n$ is a Gaussian vector on $\{Z_s : s \in \mathcal{D}_n\}$.
Brownian motion

Proof.

To check the first property, we will show the collection of increments \(\{B(d) - B(d - 2^{-n})\} \) for \(d \in \mathcal{D}_n \setminus \{0\} \) is independent, each being a Gaussian of the correct variance.

Since this is a Gaussian vector, it suffices to check the pairwise independence of its entries.

For \(d \in \mathcal{D}_n \setminus \mathcal{D}_{n-1} \),

\[
\frac{1}{2} \left[B(d + 2^{-n}) - B(d - 2^{-n}) \right]
\]

depends only on \((Z_t : t \in \mathcal{D}_{n-1})\), and so is independent of \(Z_d \), with variance \(2^{-(n+1)} \). It follows that \(B(d) - B(d - 2^{-n}) \) and \(B(d + 2^{-n}) - B(d) \) are independent with mean 0 and variance \(2^{-n} \).
Brownian motion

Proof.

- The previous arguments handles pairs $B(d) - B(d - 2^{-n})$ and $B(d + 2^{-n}) - B(d)$ for $d \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$. In all other cases, the intervals of increment are separated by some $d \in \mathcal{D}_{n-1}$.

- Let $d \in \mathcal{D}_j$ with j minimal satisfying this property, so that the two intervals are contained in $[d - 2^{-j}, d]$ and $[d, d + 2^{-j}]$.

- The increments are built from the independent Gaussians $B(d) - B(d - 2^{-j})$, and $B(d + 2^{-j}) - B(d)$ using disjoint variables $(Z_t : t \in \mathcal{D}_n)$, hence they are independent.
Brownian motion

Proof.

- Define

\[
F_0(t) = \begin{cases}
Z_1 & t = 1, \\
0 & t = 0, \\
\text{linear} & 0 < t < 1
\end{cases}
\]

and

\[
F_n(t) = \begin{cases}
2^{-(n+1)/2} Z_t & t \in \mathcal{D}_n \setminus \mathcal{D}_{n-1} \\
0 & t \in \mathcal{D}_{n-1} \\
\text{linear interpolation} & \text{otherwise}
\end{cases}
\]

- Notice that for \(d \in \mathcal{D}_n \),

\[
B(d) = \sum_{i=0}^{n} F_i(d) = \sum_{i=0}^{\infty} F_i(d).
\]
Brownian motion

Proof.

- Use

\[
\text{Prob}(\|Z_d\| \geq c\sqrt{n}) \leq \exp\left(\frac{-c^2n}{2}\right),
\]

so

\[
\sum_{n=0}^{\infty} \sum_{d \in \mathcal{D}_n} \text{Prob}(\|Z_d\| \geq c\sqrt{n}) \leq \sum_{n=0}^{\infty} (2^n + 1) \exp\left(\frac{-c^2n}{2}\right).
\]

This converges for \(c > \sqrt{2 \log 2} \), so that there is \(d \in \mathcal{D}_n \) with \(|Z_d| \geq c\sqrt{n} \) only finitely often with probability 1.

- It follows that there is a random but almost surely finite \(N \), so that, for all \(n > N \),

\[
\|F_n\|_\infty < c\sqrt{n}2^{-\frac{n}{2}}.
\]
Proof.

It follows that, almost surely,

\[B(t) = \sum_{n=0}^{\infty} B_n(t) \]

is uniformly convergent on \([0, 1]\). Thus \(B(t)\) is almost surely continuous.

To check the finite dimensional distributions, let \(t_1 < t_2 < \cdots < t_n\) in \([0, 1]\) and let \(t_{1,k} \leq t_{2,k} \leq \cdots \leq t_{n,k}\) in \(\mathcal{D}\) with \(\lim_{k \to \infty} t_{i,k} = t_i\). By continuity,

\[B(t_{i+1}) - B(t_i) = \lim_{k \to \infty} B(t_{i+1,k}) - B(t_{i,k}). \]
Proof.

- Note \(\lim_{k \to \infty} E[B(t_{i+1,k}) - B(t_{i,k})] = 0 \) and

\[
\lim_{k \to \infty} \text{Cov}(B(t_{i+1,k}) - B(t_{i,k}), B(t_{j+1,k}) - B(t_{j,k})) = \lim_{k \to \infty} \mathbf{1}_{i=j}(t_{i+1,k} - t_{i,k}) = \mathbf{1}_{i=j}(t_{i+1} - t_{i}).
\]

- The construction of Brownian motion on \([0, 1]\) is completed by the following proposition.
Proposition

Suppose \(\{X_n : n \in \mathbb{N}\} \) is a sequence of Gaussian random vectors, and \(\lim_n X_n = X, \) almost surely. If \(b := \lim_{n \to \infty} \mathbb{E}[X_n] \) and \(C := \lim_{n \to \infty} \text{Cov} X_n \) exist, then \(X \) is Gaussian with mean \(b \) and covariance matrix \(C \).

Proof.

The convergence guarantees that the set of affine transformations defining the Gaussian vectors converges.
To construct Brownian motion on \mathbb{R}, take an independent sequence B_0, B_1, \ldots of Brownian motions in $C[0, 1]$ and glue them together,

$$B(t) = B_{\lfloor t \rfloor}(t - \lfloor t \rfloor) + \sum_{i=0}^{\lfloor t \rfloor - 1} B_i(1), \quad t \geq 0.$$
Lemma (Scaling invariance)

Suppose \(\{B(t) : t \geq 0\} \) is a standard Brownian motion and let \(a > 0 \). The process \(\{X(t) = \frac{1}{a} B(a^2 t) : t \geq 0\} \) is also a standard Brownian motion.
Proof.

- Continuity of paths, independence and stationarity of increments are preserved by scaling.
- Note $X(t) - X(s) = \frac{1}{a}(B(a^2 t) - B(a^2 s))$ is normal with mean 0 and variance

 $$\frac{1}{a^2}(a^2 t - a^2 s) = t - s.$$
Theorem (Time inversion)

Suppose \(\{B(t) : t \geq 0\} \) is a standard Brownian motion. Then \(\{X(t) : t \geq 0\} \) defined by

\[
X(t) = \begin{cases}
0 & t = 0 \\
tB\left(\frac{1}{t}\right) & t \neq 0
\end{cases}
\]

is also a standard Brownian motion.
Proof.

- The finite-dimensional distributions \((B(t_1), \ldots, B(t_n))\) of Brownian motion are Gaussian random vectors characterized by \(E[B(t_i)] = 0\) and \(\text{Cov}(B(t_i), B(t_j)) = t_i\) for \(0 \leq t_i \leq t_j\).

- \(\{X(t) : t \geq 0\}\) is also a Gaussian process with mean 0. The covariances are given for \(t > 0\) and \(h \geq 0\) by

\[
\text{Cov}(X(t + h), X(t)) = (t + h)t \text{Cov} \left(B \left(\frac{1}{t + h} \right), B \left(\frac{1}{t} \right) \right)
\]

\[
= t(t + h) \frac{1}{t + h} = t.
\]

- It follows the law of Brownian motion agrees with

\[(X(t_1), X(t_2), \ldots, X(t_n)), \quad 0 \leq t_1 \leq t_2 \leq \cdots \leq t_n.\]
Invariance properties of Brownian motion

Proof.

- By the agreement in law,
 \[
 \lim_{t \downarrow 0, t \in \mathbb{Q}} X(t) = 0, \quad \text{a.s.}
 \]

- Thus, by continuity, \(\lim_{t \downarrow 0} X(t) = 0 \) a.s.

- This proves the a.s. continuity of \(X(t) \) on \([0, \infty)\).
Definition

The Ornstein-Uhlenbeck diffusion \(\{X(t) : t \in \mathbb{R}\} \) is defined by
\[
X(t) = e^{-t} B(e^{2t}).
\]

This process is time reversible in the sense that \(\{X(t) : t \geq 0\} \) and \(\{X(-t) : t \geq 0\} \).
Theorem (Law of large numbers)

Almost surely, \(\lim_{t \to \infty} \frac{B(t)}{t} = 0 \).

Proof.

Let \(X(t) \) be the time-reversal of \(B(t) \). The statement is equivalent to \(\lim_{t \downarrow 0} X(t) = 0 \) a.s..
Theorem

There exists a constant \(C > 0 \) such that, almost surely, for every small \(h > 0 \) and all \(0 \leq t \leq 1 - h \),

\[
|B(t + h) - B(t)| \leq C \sqrt{h \log \frac{1}{h}}.
\]
Proof.

- Recall

\[B(t) = \sum_{n=0}^{\infty} F_n(t) \]

where \(F_n \) is piecewise linear.

- For \(c > \sqrt{2 \log 2} \) there exists a random \(N \in \mathbb{N} \) such that, for all \(n > N \),

\[\| F'_n \|_{\infty} \leq \frac{2 \| F_n \|_{\infty}}{2^{-n}} \leq 2c \sqrt{n} 2^{\frac{n}{2}}. \]
Modulus of continuity

Proof.

- By the mean value theorem, for $t, t + h \in [0, 1]$

\[
|B(t + h) - B(t)| \leq \sum_{n=0}^{\infty} |F_n(t + h) - F_n(t)|
\]

\[
\leq h \sum_{n=0}^{l} \|F'_n\|_\infty + 2 \sum_{n=l+1}^{\infty} \|F_n\|_\infty.
\]

- For $l > N$, this is bounded by

\[
h \sum_{n=0}^{N} \|F'_n\|_\infty + 2ch \sum_{n=N}^{l} \sqrt{n2^{\frac{n}{2}}} + 2c \sum_{n=l+1}^{\infty} \sqrt{n2^{-\frac{n}{2}}}.
\]
Modulus of continuity

Proof.

- Choose h sufficiently small so that the first term is bounded by $\sqrt{h \log \frac{1}{h}}$, and so that l defined by $2^{-l} < h \leq 2^{-l+1}$ satisfies $l > N$.

- This causes the remaining terms also to be bounded by a constant times $\sqrt{h \log \frac{1}{h}}$.

Bob Hough
Math 639: Lecture 17
April 13, 2017 33 / 61
Modulus of continuity

Theorem

For every $c < \sqrt{2}$, almost surely, for every $\epsilon > 0$ there exist $0 < h < \epsilon$ and $t \in [0, 1 - h]$ with

$$|B(t + h) - B(t)| \geq c \sqrt{h \log \frac{1}{h}}.$$
Modulus of continuity

Proof.

- Let $c < \sqrt{2}$. For integers $k, n \geq 0$, define

 $$A_{k,n} = \left\{ B((k + 1)e^{-n}) - B(ke^{-n}) > c\sqrt{n}e^{-\frac{n}{2}} \right\}.$$

- We have

 $$\text{Prob}(A_{k,n}) = \text{Prob}(B(1) > c\sqrt{n}) \geq \frac{c\sqrt{n}}{c^2 n + 1} \frac{1}{\sqrt{2\pi}} e^{-\frac{c^2 n}{2}}.$$

- Using $e^n \text{Prob}(A_{k,n}) \to \infty$ as $n \to \infty$ and $1 - x \leq e^{-x}$,

 $$\text{Prob} \left(\bigcap_{0 \leq k \leq e^n - 1} A_{k,n}^c \right) = (1 - \text{Prob}(A_{0,n}))^e e^n \to 0.$$
Modulus of continuity

Theorem (Lévy’s modulus of continuity)

Almost surely,

$$\limsup_{h \downarrow 0} \sup_{0 \leq t \leq 1-h} \frac{|B(t+h) - B(t)|}{\sqrt{2h \log \frac{1}{h}}} = 1.$$
Modulus of continuity

Given natural numbers \(n, m \), define \(\Lambda_n(m) \) as the collection of intervals

\[
[(k - 1 + b)2^{-n+a}, (k + b)2^{-n+a}]
\]

for \(k \in \{1, 2, \ldots, 2^n\} \), \(a, b \in \{0, \frac{1}{m}, \ldots, \frac{m-1}{m}\} \). Set \(\Lambda(m) := \bigcup_n \Lambda_n(m) \).

Lemma

For any fixed \(m \) and \(c > \sqrt{2} \), almost surely, there exists \(n_0 \in \mathbb{N} \) such that, for any \(n \geq n_0 \),

\[
|B(t) - B(s)| \leq c \sqrt{(t - s) \log \frac{1}{t - s}}, \quad \forall [s, t] \in \Lambda_m(n).
\]
Modulus of continuity

Proof.
Let X be standard normal. By union bound,

$$\Pr\left(\sup_{k \in \{1, \ldots, 2^n\}} \sup_{a,b \in \{0, \frac{1}{m}, \ldots, \frac{m-1}{m}\}}\left| B\left((k - 1 + b)2^{-n+a}\right) - B\left((k + b)2^{-n+a}\right)\right| > c\sqrt{2^{-n+a} \log(2^{n+a})}\right)$$

$$\leq 2^n m^2 \Pr(X > c\sqrt{\log(2^n)})$$

$$\leq \frac{m^2}{c\sqrt{\log(2^n)} \sqrt{2\pi}} \frac{1}{2^{n(1-c^2/2)}}.$$

The bound is summable, so that the result follows by Borel-Cantelli.
Lemma

Given \(\epsilon > 0 \) there exists \(m \in \mathbb{N} \) such that for every interval \([s, t] \subset [0, 1] \) there exists an interval \([s', t'] \in \Lambda(m) \) with \(|t - t'| < \epsilon(t - s) \) and \(|s - s'| < \epsilon(t - s) \).
Modulus of continuity

Proof.

- Choose m sufficiently large so that $\frac{1}{m} < \frac{\epsilon}{4}$ and $2\frac{1}{m} < 1 + \frac{\epsilon}{2}$.
- Given $[s, t] \subset [0, 1]$, pick n such that $2^{-n} \leq t - s < 2^{-n+1}$ and $a \in \{0, \frac{1}{m}, \ldots, \frac{m-1}{m}\}$ so that $2^{-n+a} \leq t - s < 2^{-n+a} + \frac{1}{m}$.
- Pick $k \in \{1, \ldots, 2^n\}$ such that $(k - 1)2^{-n+a} < s \leq k2^{-n+a}$ and $b \in \{0, \frac{1}{m}, \ldots, \frac{m-1}{m}\}$.
- Let $s' = (k - 1 + b)2^{-n+a}$ so that $|s - s'| \leq \frac{2^{-n+a}}{m} \leq \frac{\epsilon}{4}2^{-n+1} \leq \frac{\epsilon}{2}(t - s)$.
- Choose $t' = (k + b)2^{-n+a}$. Then $|t - t'| \leq |s - s'| + |(t - s) - (t' - s')| \leq \epsilon(t - s)$.
Proof of Lévy’s modulus of continuity.

- Given $c > \sqrt{2}$, pick $0 < \epsilon < 1$ sufficiently small so that $	ilde{c} := c - \epsilon > \sqrt{2}$. Let $m \in \mathbb{N}$ as in the previous lemma.
- Choose $n_0 \in \mathbb{N}$ sufficiently large so that, for all $n \geq n_0$ and all intervals $[s', t'] \in \Lambda_n(m)$, almost surely

$$|B(t') - B(s')| \leq \tilde{c} \sqrt{(t' - s')} \log \frac{1}{t' - s'}.$$
Proof of Lévy’s modulus of continuity.

- Applying the previous upper bound on modulus of continuity

\[
|B(t) - B(s)| \leq |B(t) - B(t')| + |B(t') - B(s')| + |B(s') - B(s)|
\]

\[
\leq C \sqrt{|t - t'| \log \frac{1}{|t - t'|}} + \tilde{c} \sqrt{(t' - s') \log \frac{1}{t' - s'}}
\]

\[
+ C \sqrt{|s - s'| \log \frac{1}{|s - s'|}}
\]

- Taking \(\epsilon > 0 \) sufficiently small, the leading constant can be made arbitrarily close to \(c \).
Hölder continuity

Definition

A function $f : [0, \infty) \rightarrow \mathbb{R}$ is said to be locally α-Hölder continuous at $x \geq 0$, if there exists $\epsilon > 0$ and $c > 0$ such that

$$|f(x) - f(y)| \leq c|x - y|^\alpha, \quad \forall y \in B_\epsilon(x).$$

We refer to $\alpha > 0$ as the Hölder exponent and to $c > 0$ as the Hölder constant.
Hölder continuity

Theorem

If $\alpha < \frac{1}{2}$ *then, almost surely, Brownian motion is everywhere locally* α-*Hölder continuous.*

Proof.

This follows as a consequence of Lévy’s bound on modulus of continuity.
Theorem

Almost surely, for all $0 < a < b < \infty$, Brownian motion is not monotone on the interval $[a, b]$.
Monotonicity

Proof.

- Fix an interval $[a, b]$.
- If $B(s)$ is monotone on $[a, b]$ then for each subdivision $a = a_1 < a_2 < ... < a_{n+1} = b$ into n subintervals $[a_i, a_{i+1}]$, the increment $B(a_{i+1}) - B(a_i)$ has a common sign.
- By independence, this happens with probability $2 \cdot 2^{-n}$. Letting $n \to \infty$, the probability of monotonicity on $[a, b]$ is 0.
- The conclusion holds for all intervals $[a, b]$, $a < b$ simultaneously by taking a union over those intervals of rational endpoints.
Recall the Hewitt-Savage 0-1 Law.

Theorem (Hewitt-Savage 0-1 Law)

If E is an exchangeable event for an independent, identically distributed sequence, then $\text{Prob}(E)$ is 0 or 1.
Deviations

Proposition

Almost surely,

\[
\limsup_{n \to \infty} \frac{B(n)}{\sqrt{n}} = \infty, \quad \liminf_{n \to \infty} \frac{B(n)}{\sqrt{n}} = -\infty.
\]
Deviations

Proof.

- By Fatou’s lemma,
 \[\text{Prob}(B(n) > c\sqrt{n} \text{ i.o.}) \geq \limsup_{n \to \infty} \text{Prob}(B(n) > c\sqrt{n}). \]

- By scaling, the limsup is equal to \(\text{Prob}(B(1) > c) > 0). \)

- Let \(X_n = B(n) - B(n-1), \) which is an exchangeable sequence, and note
 \[\{ B(n) > c\sqrt{n} \text{ i.o.} \} = \left\{ \sum_{j=1}^{n} X_j > c\sqrt{n} \text{ i.o.} \right\} \]

so that \(B(n) > c\sqrt{n} \text{ i.o.} \) with probability 1.
For a function f, define *upper* and *lower right derivatives*

\[
D^* f(t) = \limsup_{h \downarrow 0} \frac{f(t + h) - f(t)}{h},
\]

\[
D_* f(t) = \liminf_{h \downarrow 0} \frac{f(t + h) - f(t)}{h}.
\]
Theorem

Fix $t \geq 0$. Almost surely, Brownian motion is not differentiable at t. Moreover, $D^* B(t) = \infty$ and $D_* B(t) = -\infty$.

Proof.

Given standard Brownian motion B, let X be the time inversion. Then

$$D^* X(0) \geq \limsup_{n \to \infty} n(X(1/n) - X(0)) \geq \limsup_{n \to \infty} \sqrt{n}X(1/n) = \limsup_{n \to \infty} \frac{B(n)}{\sqrt{n}}.$$

This is infinite, and the reverse bound is similar. To obtain the bounds at $t \neq 0$, translate by t. \qed
Almost surely, Brownian motion is nowhere differentiable. Furthermore, almost surely, for all t,

$$D^* B(t) = \infty, \text{ or } D_* B(t) = -\infty.$$
Proof.

- Suppose there is $t_0 \in [0, 1]$ with

 $$\limsup_{h \downarrow 0} \frac{|B(t_0 + h) - B(t_0)|}{h} < \infty,$$

 so that there is a constant M with

 $$\sup_{h \in (0,1]} \frac{|B(t_0 + h) - B(t_0)|}{h} \leq M.$$

 It suffices to prove that this holds with probability 0 for any fixed M.

Proof.

- If t_0 is contained in $\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]$ for $n > 2$, then for all $1 \leq j \leq 2^n - k$,

$$
\left| B \left(\frac{k+j}{2^n} \right) - B \left(\frac{k+j-1}{2^n} \right) \right| \leq \left| B \left(\frac{k+j}{2^n} \right) - B(t_0) \right| + \left| B \left(\frac{k+j-1}{2^n} \right) - B(t_0) \right| \leq \frac{M(2j+1)}{2^n}.
$$

- Define

$$
\Omega_{n,k} := \left\{ \left| B \left(\frac{k+j}{2^n} \right) - B \left(\frac{k+j-1}{2^n} \right) \right| \leq \frac{M(2j+1)}{2^n}, \ j = 1, 2, 3 \right\}
$$
Proof.

By independence of increments and the scaling property,

\[\text{Prob}(\Omega_{n,k}) \leq \text{Prob}\left(|B(1)| \leq \frac{7M}{2^n}\right)^3. \]

Thus

\[\text{Prob}\left(\bigcup_{k=1}^{2^n-3} \Omega_{n,k}\right) \leq 2^n(7M2^{-n/2})^3 = (7M)^32^{-n/2}. \]

This is summable in \(n \), so that by Borel-Cantelli, only finitely many \(\Omega_{n,k} \) occur with probability 1.
A right-continuous function \(f : [0, t] \rightarrow \mathbb{R} \) is a function of \textit{bounded variation} if

\[
V_f^{(1)}(t) := \sum_{j=1}^{k} |f(t_j) - f(t_{j-1})| < \infty
\]

where the supremum is over all \(k \in \mathbb{N} \) and partitions

\(0 = t_0 \leq t_1 \leq \cdots \leq t_{k-1} \leq t_k = t \). If the supremum is infinite \(f \) is said to be of \textit{unbounded variation}.
Bounded variation

Theorem

Suppose that the sequence of partitions

\[0 = t_0^{(n)} \leq t_1^{(n)} \leq \cdots \leq t_{k(n)-1}^{(n)} \leq t_{k(n)}^{(n)} = t \]

is nested, in the sense that one point is added at each step, and the mesh

\[\Delta(n) := \sup_{1 \leq j \leq k(n)} \{ t_j^{(n)} - t_{j-1}^{(n)} \} \]

converges to 0. Then, almost surely,

\[\lim_{n \to \infty} \sum_{j=1}^{k(n)} (B(t_j^{(n)}) - B(t_{j-1}^{(n)}))^2 = t \]

and Brownian motion is of unbounded variation.
Bounded variation

Lemma

If \(X, Z \) are independent, symmetric random variables in \(L^2 \), then

\[
\mathbb{E}[(X + Z)^2 | X^2 + Z^2] = X^2 + Z^2.
\]

Proof.

By symmetry of \(Z \),

\[
\mathbb{E}[(X + Z)^2 | X^2 + Z^2] = \mathbb{E}[(X - Z)^2 | X^2 + Z^2].
\]

It follows that \(\mathbb{E}[XZ | X^2 + Z^2] = 0 \), which suffices.
Bounded variation

Proof of variation theorem.

To deduce the unbounded variation from the mean-square claim we use the Hölder property. Let \(\alpha \in (0, 1/2) \), and let \(n \) be such that

\[
|B(a) - B(b)| \leq |a - b|^{\alpha}
\]

for all \(a, b \in [0, t] \) with \(|a - b| \leq \Delta(n) \).

Then

\[
\sum_{j=1}^{k(n)} |B(t_j^{(n)}) - B(t_{j-1}^{(n)})| \geq \Delta(n)^{-\alpha} \sum_{j=1}^{k(n)} (B(t_j^{(n)}) - B(t_{j-1}^{(n)}))^2.
\]

Define \(X_n := \sum_{j=1}^{k(n)} \left(B\left(t_j^{(n)} \right) - B\left(t_{j-1}^{(n)} \right) \right)^2 \). Let

\(\mathcal{G}_n = \sigma(X_n, X_{n+1}, \ldots) \) and

\[
\mathcal{G}_\infty := \bigcap_{k=1}^{\infty} \mathcal{G}_k \subset \cdots \subset \mathcal{G}_{n+1} \subset \mathcal{G}_n \subset \cdots \subset \mathcal{G}_1.
\]
Proof of variation theorem.

- We show that \(\{X_n : n \in \mathbb{N}\} \) is a reverse martingale, i.e. that almost surely,
 \[
 X_n = \mathbb{E}[X_{n-1} | \mathcal{G}_n], \quad n \geq 2.
 \]

- If \(s \in (t_1, t_2) \) is the inserted point, apply the lemma to the random variables \(B(s) - B(t_1) \), \(B(t_2) - B(s) \) and \(\mathcal{F} \) the \(\sigma \)-algebra generated by \((B(s) - B(t_1))^2 + (B(t_2) - B(s))^2 \). Thus
 \[
 \mathbb{E}[(B(t_2) - B(t_1))^2 | \mathcal{F}] = (B(s) - B(t_1))^2 + (B(t_2) - B(s))^2.
 \]

Hence
 \[
 \mathbb{E} \left[(B(t_2) - B(t_1))^2 - (B(s) - B(t_1))^2 - (B(t_2) - B(s))^2 \bigg| \mathcal{F} \right] = 0
 \]

so \(X_n \) is a reverse martingale.
Proof of variation theorem.

- Thus \(\lim_{n \uparrow \infty} X_n = E[X_1 | \mathcal{G}_\infty] \) a.s.
- We have \(E[X_1] = t \)
- The variance is bounded by

\[
\lim \inf_{n \uparrow \infty} E[(X_n - E[X_n])^2] = \lim \inf_{n \uparrow \infty} 3 \sum_{j=1}^{k(n)} (t_{j(n)}^{(n)} - t_{j-1(n)}^{(n)})^2
\leq 3t \lim \inf_{n \uparrow \infty} \Delta(n) = 0.
\]

- Thus the limit is \(t \) a.s.