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Stationary sequence

Definition

A sequence Xp, X1, ... of random variables is stationary if, for each k, the
shifted sequence {X,1x,n = 0} has the same distribution, that is, if for
each m, (Xo, ..., Xmm) is equal in distribution to (X, ..., Xk1+m)-
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Stationary sequence

Example

o Xo,Xl,Xz, ... are i.i.d.

@ Let X, be a Markov chain with transition probability p(x, A) and
stationary probability distribution 7, so w(A) = {7 (dx)p(x, A). If Xo
has distribution 7 then Xy, X1, X, ... is stationary.

@ A special case of the previous example: S = {0,1} and
p(x,{1 — x}) = 1. The stationary distribution is w(0) = 7(1) = 3.
Thus (Xo, X1, ...) is either (0,1,0,1,...) or (1,0,1,0,...) with equal
probability %
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Stationary sequence

Example
o (Rotation of the circle) Let Q = [0,1), .# Borel sets and P Lebesgue
measure. Set X,(w) = w + nf mod 1. To see this as a Markov chain,
set p(x,{y}) =1if y = (x+ 60) mod 1.
o If X, X1, ... is a stationary sequence and g : R{®12-} R js
measurable then Yy = g(X, Xk+1,...) is a stationary sequence.

o (Bernoulli shift) Q = [0,1), .# Borel, P Lebesgue measure.
Yo(w) =w and for n > 1, let Y,(w) =2Y,-1(w) mod 1.
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Stationary sequence

Example
@ (Measure preserving map) Let (2,.%, P) be a probability space. A
measurable map ¢ : Q — Q is measure preserving if P(¢1A) = P(A)
forall Ae .Z. Let ¢" = ¢(¢" 1) be the nth iterate, n > 1, where
¢°(w) = w. For X € Z, Xp(w) = X(¢"w).
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Stationary sequence

o Let Yp, Y1, Y2, ... be a stationary sequence in a space (S,.¥). By
Kolmogorov's extension theorem there is a probability measure P on
(510123 | {0.1.2-}) 50 that the sequence X,(w) = X(w,) has the
same distribution as Yjp, Y1, ....

@ Let ¢ be the shift operator ¢(wp, w1, ...) = (w1, ws,...). Then ¢ is
measure preserving and X,(w) = X(¢"w).
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Stationary sequence

Theorem

Any stationary sequence {X, : n = 0} can be embedded in a two-sided
stationary sequence {Y, : n € Z}.

Proof.
Define

Prob(Y_m € Ao, ..., Yn € Amsn) = Prob(Xo € Ao, ..., Xmn € Amn)

and apply Kolmogorov's extension theorem to extend Prob to a probability
on (S%,.7%). O

v
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Ergodicity

Definition

Let ¢ be measure preserving.
o Aset Ae .ZF is invariant if 1A = A.
e Ais almost invariant if Prob(AA¢~1(A)) = 0.
@ The class of invariant events is a o-field, .#.

@ A measure preserving transformation on (2,.%, Prob) is said to be
ergodic if # is trivial, in the sense that if A€ .Z then
Prob(A) € {0, 1}.
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Ergodicity

Example
Let {X,} be a Markov chain on countable state space S, with invariant
probability measure m > 0.
@ If the chain is reducible, then the various irreducible components are
invariant sets with measure between 0 and 1, so the chain is not

ergodic.
@ If the chain is irreducible, then any invariant set is either empty or the
whole space, so the chain is ergodic.
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Ergodicity

Example
Consider rotation on the circle, identified with R/Z, by an angle 6.
e If # =, 0 <m < nintegers then the rotation is not ergodic. If B is
any subset of [0, 1) then A = [ J]_5 (B + &) is invariant.
o If 0 is irrational then the sequence is ergodic. To check this, note that
xn = nf mod 1. If A is an invariant set with |A| > 0 then, for any
0 > 0 we can choose interval J = [a, b) with |b — a|] > 0 such that
|AnJ| = (1—0)|J|. By translating, |A] > 1 — 26, so |A| = 1.

Bob Hough Math 639: Lecture 14 March 28, 2017 10 / 45



Ergodicity

Theorem

Let g : RIOL} 5 R be measurable. If Xy, X1, ... is an ergodic stationary
sequence, then Y = g(Xx, Xki1,-.-) is ergodic.
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Mean ergodic theorem

Theorem
Let U be a unitary operator on a Hilbert space 7. Let P be the
orthogonal projection onto {1y : ¢ € 7, U = 1}. Then, for any f € A,

1 N—-1
lim — "f = Pf.
Ninoo N nz—;) o

We will prove a vast generalization of this theorem over the next several
lectures.
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Mean ergodic theorem

Lemma
© If U is unitary, then Uf = f if and only if U*f = f.
@ For any operator on a Hilbert space /#, (Ran A)* = Ker A*.

Proof.

To prove the first statement, since U*U = [, if Uf = f then
U*Uf = f = U*f. Meanwhile, if U*f = f then {f — Uf,f — Uf) =0 by
unitarity. The second statement is immediate. [

v
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Mean ergodic theorem

Proof of the Mean ergodic theorem.
Q First let f = g— Ug. Then

LY | Lig— g <2l
N = N '

The same holds for f € Ran(/ — U) by a limiting argument.

Q@ If f e (Ran(/ — U))* then U*f = f, so Uf = f, and the limit is
Pf = Uf =f.

© Thus the statement holds on all of Ran(/ — U) @ Ker(/ — U*) = 7.

Ol
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Pointwise ergodic theorem

Theorem

Let ¢ be a measure-preserving transformation on (2, %, P). For any
Xell,

! 2 ~ E[X].#]

a.sand in L.
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Pointwise ergodic theorem

Lemma (Maximal ergodic lemma)

Let Xj(w) = X(¢w), Sk(w) = Xo(w) + -+ + Xk—1(w), and
My (w) = max(0, S1(w), ..., Sk(w)). Then

E[X1(M, > 0)] > 0.
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Pointwise ergodic theorem

Proof of Maximal ergodic lemma.
o If j < k then My (¢w) = Sj(¢pw), so

X(w) + My (dw) = X(w) + Sj(gw) = Sj11(w),
50 X(w) = Sjp1(w) — Mi(gw), j = 1,2, ..., k.
o Trivially X(w) = S1(w) — Mk (¢w) since S; =
@ Thus
E[X(w)1(M, > 0)] = fM . max(Sy(w), ..., Sk(w)) — Mk (¢w)dP
[ M) - miow)ap
M, >0

J Mi(w) — Mi(¢w)dP = 0.
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

o After replacing X with X — E[X|.#] we can assume that E[X|.#] = 0.
o Let X = limsup 2 and let € > 0, D = {w : X(w) > €}.

e Since X(¢w) = X(w), De #.

@ Define

Bob Hough Math 639: Lecture 14 March 28, 2017 18 / 45



Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.
@ By the Maximal ergodic theorem E[X*1(F, > 0)] > 0.
@ Since E[|X*|] < E[|X]|] + € < o0, the dominated convergence theorem
implies E[X*1f,] — E[X*1F£], so E[X*1¢] > 0.
@ Since F=De .#,

0 < E[X*1p] = E[(X — ¢)1p] = E[E[X|.#]1p] — eP(D) = —¢P(D).

@ Thus 0 = P(D) = P(limsup S,/n > ¢). Replacing X with —X obtains
Sp/n— 0 as.

Ol

v
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

o To get the convergence in L' we truncate. Let M > 0,

Xy(w) = X(@)1(X| < M),  Xy(w) = X(w) = Xy (w).

@ By the earlier part of the proof,
]' = / m /
- Z Xm(¢"w) — E[Xy|7] a.s
m=0
By bounded convergence

[ 2 [XMMH
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.
e To handle X}, bound

1n1

E[ X//((z)m
n
m=0

3 m]<awmm

Since E[| E[Xy|-71I] < E[E[|Xpll-#]] = E[[Xy]]-

o |t follows

limsupE [

n—0o0

%2 —Eﬂfﬂ E[1X0]
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Wiener's maximal equality

Theorem

Let Xj(w) = X(¢w), Sk(w) = Xo(w) + - + Xk_1(w), Ax(w) = 2
and Dy = max(Ay,...,Ax). If « > 0, then

Prob(Dyx > o) < a *E[|X]].

Proof.

Let B = {Dx > a}. It follows from the Maximal ergodic lemma that

E[|X]] > f XdP > J adP = a Prob(B).
B B
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Markov chains

Example

o (i.i.d. sequence) Since .# is trivial, the ergodic theorem implies

ln—l
— Xm — E[X
nZ [Xo]

m=0

a.s. and in LL.

e (Markov chains) Let {X,} be an irreducible Markov chain with
stationary measure m > 0. Then .# is trivial again, so

S|

n—1
D) F(Xm) = D F()m(x)
m=0 X

a.s. and in LL.
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Irrational rotations

Example

o (irrational rotations) Let Q = [0,1), ¢(w) = w + @ mod 1 where 6 is
irrational. Again . is trivial, so for A a Borel set,

:IH

2 Twe A) — |A|, as.
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Irrational rotations

Theorem

If A= [a, b) is an interval then the exceptional set of rotations is empty.

Proof.

Approximate the characteristic function of the interval from above and
below by trigonometric polynomials. Use that Z,I)I:o e(kd) = %W,
which is bounded. [
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Benford’s law

Let 0 = logqp2 and for 1 < k <9, Ax = [logqg k, logg(k + 1)). By the
previous result,

14 N k+1
=2, 1a,(67(0)) = logio —,
m=0

This says that the first digit of the powers of 2 is asymptotically
distributed according to Benford's law.
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Recurrence

Theorem

Let X1, Xo, ... be a stationary sequence taking values in R and
Sk=X1+--+ X, let A={Sk#0all k> 1}, and let R, = |{51, ..., Sn}|
be the number of points visited at time n. As n — o0,

% s E[1a].7] as.

Bob Hough Math 639: Lecture 14 March 28, 2017 27 / 45



Recurrence

Proof.

o Let X1, X, ... constructed on (RY){%1} with X, (w) = wy, with ¢
the shift operator.
e We have R, = > _; 14(¢™w). Thus the ergodic theorem gives

Rn
liminf — > E[14].], a.s

n—a0 n
o Let Ay ={S1 #0,5 #0,...,S¢ # 0}. One has

n—k

Ro < k+ ) 1a,(¢™w)
m=1

so limsup,_,o, %2 < E[14,]|-7]. Since E[14,|.#] | E[14|.#], the claim
follows.
[]
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Recurrence

Theorem

Let X1, Xo, ... be a stationary sequence taking values in Z with
E[|Xi]] < o0. Let S, = X1+ ---+ Xy, and let A= {51 #0,5 #0,...}.

o IfE[X1]|-#] = 0 then Prob(A) = 0.
@ Also, if Prob(A) = 0 then Prob(S, =0i0.) = 1.
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Recurrence

Proof.
o If E[X1|-#] = 0 then the ergodic theorem implies S,/n — 0 a.s.

@ For any K,
i ( ) < 1
Imsup | max — | < max ——.

n—oo \1<k<n n k=K k

@ This tends to 0 as K — 0, so % — 0, and Prob(A) = 0.
o Let Fj = {S; #0, for i <j,S; =0} and

GJ'J( = {5j+/—5j #0forl <i< k,5j+k—5j :0}.
@ Since Prob(A) =0, >, Prob(F) = 1.
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Recurrence

Proof.

o By stationarity, Prob(G; x) = Prob(Fy). Also, for fixed j, the G are
disjoint and have union of full measure, so

2 Prob(Fj n Gj ) = 1.
.k

o It follows that Prob(S, = 0 at least 2 times) = 1. Iterating,
Prob(S, = 0 at least k times) = 1 for all k.
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Recurrence

Theorem

Let A be asetandlet Ty =0, T, =inf{m> T,_1: X, € A}. If
Prob(X, € A at least once) = 1, then conditioned on Xy € A,
t, = T, — T,_1 Is a stationary sequence with

1

ElNlXo € Al = 5 b0 e AT

See Durrett pp. 340-341.
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Recurrence

The result is due to Poincaré.
Theorem

Suppose ¢ : Q — Q preserves Prob in the sense that Probo¢—! = Prob.
Let Tp=inf{n>1:¢"(w) e A}.

Q@ Tao<was onA

Q {¢"(w)eAio}DA

@ If ¢ is ergodic and Prob(A) > 0, then Prob(¢"(w) € Aio.) = 1.

Bob Hough Math 639: Lecture 14 March 28, 2017 33 /45



Recurrence

Proof.
QO Let B={weA Tp=}. Ifwe ¢ "B then ¢"(w) € A, by
¢"(w) ¢ A for n > m, so the =B are pairwise disjoint. Since ¢ is
measure preserving, Prob(B) = 0.

@ Since ¢X is measure preserving,

0 = Prob(w € A, ¢"¥(w) ¢ A, for all n>1)
> Prob(w € A, ¢™(w) ¢ A, for all m > k).

This holds for all k, so the claim follows.

Q@ B={w:¢"(w)e Aio.}is invariant and contains A, hence has
probability 1.
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The subadditive ergodic theorem

Theorem (Subadditive ergodic theorem)
Suppose Xm pn, 0 < m < n satisfy

QO Xom + Xmn = Xon

Q {Xok,(n+1)k; 1 = 1} is a stationary sequence for each k

© The distribution of { X, mtk, k = 1} does not depend on m.

Q@ E[Xy;] < o0 and for each n, E[Xo ]
Then

1E

Q lim, - E[X0,n] = infrm = E[Xo,m] = 7.

> on, where g > —00.

Q X =Ilim,_» X‘;’" exists a.s. and in L1, so E[X] = .

© If the stationary sequences in 2 above are ergodic then X =~ a.s.

Bob Hough Math 639: Lecture 14 March 28, 2017 35 /45



Examples

Example

o (Stationary sequences) Suppose &1, &2, ... is a stationary sequence
with E[|¢k|] < 00, and let X p = Emg1 + -+ - + &n. Then
XO,n = XO,m + Xm,n-

e (Range of a random walk) Suppose &1, &2, ... is a stationary sequence
and let S, =& + -+ - +&n. Let Xmn = [{Sm+1, -+, Sn}|. Then
XO,m + Xm,n = XO,n-

@ (Longest common subsequence) Given ergodic stationary sequences
X1,X0,X3,... and Y1, Yo, Y3, ..., let
Lmn = max{K : Xj, = Yj,,1< k <K} where
m<phn<hb<---<ikg<nand m<j <jp<---<jk<n. Then

LO,m + Lm,n = LO,n-
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.
The proof is in four steps.

o We have E[|Xos|] < Cn. To check this, use X', + X , = X',
Thus E[X;,] < nE[X;;] < o0. Combine this with E[Xo 5] = ~on
where vg > —o0.

Let a, = E[Xo,n]. Then an, + an—m > ap, which implies

1 inf ST = 4
n m=1 m
L]
4
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.
o Write n = km + £. Then

Xoy,, k XO,m +ot X(kfl)m,km ka,n
< + .
n km + ¢ k n

The pointwise ergodic theorem gives

Xom ++ + Xk—1)m,km
k

— A a.s. and in L}

where Ap, = E[Xo,m|-m], and ., is shift invariant for X _1)m km.
k > 1. For fixed ¢, € > 0, since E[X o] < o,

Z Prob(Xim kmi¢ > (km + £)e Z Prob(Xo ¢ > ke) <
k=1 k=1
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.
Combining these observations,

A

- Xo
X = limsup —2 < -
n m

)

so E[X] < X E[Xo, ] which implies E[X] < 7. If the sequences are
ergodic, then X <
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

o Let X = liminf,_ Xf;". Let e >0and let Z =€+ (X v —M). Since
E[X] < o, E[|Z]] < <.
Define Yimn = Xmn— (n—m)Z and Y = liminf,_. 22 < —e.
Define T, = min{n > 1: Yy, min < 0}.

By stationarity, T, is equal in distribution to Ty, so

E[Ym7m+11(Tm > N)] = E[Yo711(T0 > N)]
Since Prob( Ty < o0) = 1, pick N large enough so that

E[Yo,ll(To > N)] < €.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.
Define
S:{Tm on {Tm < N}
m 1 on {T, > N}
_ 0 on {T, < N}
Em = { Yomei  on {Tm> N} -

Since Y m+T, <0and Sy, =1, Y my1 > 0on {T, > N} we have
Ym,m+5m <&mand &, = 0.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.
Let Ry = 0 and Ry = Rk—1 + Sg,_,. Define K = max{k : Ry < n}. We
have

N

n—1
Yo < YRy + YRR + oo+ YRR + YRin < Z Em+ Z | Yojin—j+al-
m=0 Jj=1

Hence, )
limsup —E[¥o,n] < E[éo] < E[Y0,11(To > N)] <e.
n—0o0
Thus v = limp_0 £ E[Xo,n] < 26 + E[X v —M]. Thus v = E[X] = E[X]
and X = X almost surely. [

v
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem. J
Ol

See Durrett p. 346 for the convergence in L1.

Bob Hough Math 639: Lecture 14 March 28, 2017 43 / 45



Products of random matrices

Example

@ (Products of random matrices) Suppose Aj, Ay, ... is a stationary
sequence of k x k matrices with positive entries, and let

am,n(iaj) = (Am+1 T An)(la./)

Note ag,m(1,1)amn(1,1) < apn(1,1). Set Xpm n = —log am n(1,1) so
Xo,m + Xm,n = Xo,n. Subject to

E[|log Am(i, )] < o0, all i,j

we obtain Xy, — X a.s.
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First-passage percolation

Example
(First passage percolation) Consider Z? as a graph with edges connecting
x,y € 72 when |x — y| = 1. Assign i.i.d. non-negative edge weights 7(e)
of finite mean.
o If xop = x,x1,%0,...,X, = y is a path from x to y with
|Xm — Xm—1| = 1, define the travel time to be

T(Xx0, x1) 4+« + T(Xn—1, Xn)-

o Define the passage time t(x,y) to be the infimum of travel times over
all paths from x to y.

o Define Xy, , = t((m,0),(n,0)). Since Xo,m + Xm,n = Xon, one
obtains % — X a.s. We have X is almost surely constant, since it is
measurable in the tail sigma field.
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