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Stationary sequence

Definition

A sequence X0,X1, ... of random variables is stationary if, for each k , the
shifted sequence tXn`k , n ě 0u has the same distribution, that is, if for
each m, pX0, ...,Xmq is equal in distribution to pXk , ...,Xk`mq.
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Stationary sequence

Example

X0,X1,X2, ... are i.i.d.

Let Xn be a Markov chain with transition probability ppx ,Aq and
stationary probability distribution π, so πpAq “

ş

πpdxqppx ,Aq. If X0

has distribution π then X0,X1,X2, ... is stationary.

A special case of the previous example: S “ t0, 1u and
ppx , t1´ xuq “ 1. The stationary distribution is πp0q “ πp1q “ 1

2 .
Thus pX0,X1, ...q is either p0, 1, 0, 1, ...q or p1, 0, 1, 0, ...q with equal
probability 1

2 .
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Stationary sequence

Example

(Rotation of the circle) Let Ω “ r0, 1q, F Borel sets and P Lebesgue
measure. Set Xnpωq “ ω ` nθ mod 1. To see this as a Markov chain,
set ppx , tyuq “ 1 if y “ px ` θq mod 1.

If X0,X1, ... is a stationary sequence and g : Rt0,1,2...u Ñ R is
measurable then Yk “ gpXk ,Xk`1, ...q is a stationary sequence.

(Bernoulli shift) Ω “ r0, 1q, F Borel, P Lebesgue measure.
Y0pωq “ ω and for n ě 1, let Ynpωq “ 2Yn´1pωq mod 1.
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Stationary sequence

Example

(Measure preserving map) Let pΩ,F ,Pq be a probability space. A
measurable map φ : Ω Ñ Ω is measure preserving if Ppφ´1Aq “ PpAq
for all A P F . Let φn “ φpφn´1q be the nth iterate, n ě 1, where
φ0pωq “ ω. For X P F , Xnpωq “ X pφnωq.
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Stationary sequence

Let Y0,Y1,Y2, ... be a stationary sequence in a space pS ,S q. By
Kolmogorov’s extension theorem there is a probability measure P on
pSt0,1,2,...u,S t0,1,2,...uq so that the sequence Xnpωq “ X pωnq has the
same distribution as Y0,Y1, ....

Let φ be the shift operator φpω0, ω1, ...q “ pω1, ω2, ...q. Then φ is
measure preserving and Xnpωq “ X pφnωq.
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Stationary sequence

Theorem

Any stationary sequence tXn : n ě 0u can be embedded in a two-sided
stationary sequence tYn : n P Zu.

Proof.

Define

ProbpY´m P A0, ...,Yn P Am`nq “ ProbpX0 P A0, ...,Xm`n P Am`nq

and apply Kolmogorov’s extension theorem to extend Prob to a probability
on pSZ,S Zq.
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Ergodicity

Definition

Let φ be measure preserving.

A set A P F is invariant if φ´1A “ A.

A is almost invariant if ProbpA∆φ´1pAqq “ 0.

The class of invariant events is a σ-field, I .

A measure preserving transformation on pΩ,F ,Probq is said to be
ergodic if I is trivial, in the sense that if A P I then
ProbpAq P t0, 1u.
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Ergodicity

Example

Let tXnu be a Markov chain on countable state space S , with invariant
probability measure π ą 0.

If the chain is reducible, then the various irreducible components are
invariant sets with measure between 0 and 1, so the chain is not
ergodic.

If the chain is irreducible, then any invariant set is either empty or the
whole space, so the chain is ergodic.
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Ergodicity

Example

Consider rotation on the circle, identified with R{Z, by an angle θ.

If θ “ m
n , 0 ă m ă n integers then the rotation is not ergodic. If B is

any subset of r0, 1n q then A “
Ťn´1

k“0

`

B ` k
n

˘

is invariant.

If θ is irrational then the sequence is ergodic. To check this, note that
xn “ nθ mod 1. If A is an invariant set with |A| ą 0 then, for any
δ ą 0 we can choose interval J “ ra, bq with |b ´ a| ą 0 such that
|AX J| ě p1´ δq|J|. By translating, |A| ě 1´ 2δ, so |A| “ 1.
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Ergodicity

Theorem

Let g : Rt0,1,...u Ñ R be measurable. If X0,X1, ... is an ergodic stationary
sequence, then Yk “ gpXk ,Xk`1, ...q is ergodic.
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Mean ergodic theorem

Theorem

Let U be a unitary operator on a Hilbert space H . Let P be the
orthogonal projection onto tψ : ψ P H ,Uψ “ ψu. Then, for any f P H ,

lim
NÑ8

1

N

N´1
ÿ

n“0

Unf “ Pf .

We will prove a vast generalization of this theorem over the next several
lectures.
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Mean ergodic theorem

Lemma
1 If U is unitary, then Uf “ f if and only if U˚f “ f .

2 For any operator on a Hilbert space H , pRanAqK “ KerA˚.

Proof.

To prove the first statement, since U˚U “ I , if Uf “ f then
U˚Uf “ f “ U˚f . Meanwhile, if U˚f “ f then xf ´ Uf , f ´ Uf y “ 0 by
unitarity. The second statement is immediate.
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Mean ergodic theorem

Proof of the Mean ergodic theorem.

1 First let f “ g ´ Ug . Then

›

›

›

›

›

1

N

N´1
ÿ

n“0

Unf

›

›

›

›

›

“

›

›

›

›

1

N
pg ´ UNgq

›

›

›

›

ď
2}g}

N
Ñ 0.

The same holds for f P RanpI ´ Uq by a limiting argument.

2 If f P pRanpI ´ UqqK then U˚f “ f , so Uf “ f , and the limit is
Pf “ Uf “ f .

3 Thus the statement holds on all of RanpI ´ Uq ‘ KerpI ´ U˚q “H .
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Pointwise ergodic theorem

Theorem

Let φ be a measure-preserving transformation on pΩ,F ,Pq. For any
X P L1,

1

n

n´1
ÿ

m“0

X pφmωq Ñ ErX |I s

a.s and in L1.
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Pointwise ergodic theorem

Lemma (Maximal ergodic lemma)

Let Xjpωq “ X pφjωq, Skpωq “ X0pωq ` ¨ ¨ ¨ ` Xk´1pωq, and
Mkpωq “ maxp0,S1pωq, ...,Skpωqq. Then

ErX1pMk ą 0qs ě 0.
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Pointwise ergodic theorem

Proof of Maximal ergodic lemma.

If j ď k then Mkpφωq ě Sjpφωq, so

X pωq `Mkpφωq ě X pωq ` Sjpφωq “ Sj`1pωq,

so X pωq ě Sj`1pωq ´Mkpφωq, j “ 1, 2, ..., k .

Trivially X pωq ě S1pωq ´Mkpφωq since S1 “ X .

Thus

ErX pωq1pMk ą 0qs ě

ż

Mką0
maxpS1pωq, ...,Skpωqq ´MkpφωqdP

“

ż

Mką0
Mkpωq ´MkpφωqdP

ě

ż

Mkpωq ´MkpφωqdP “ 0.
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

After replacing X with X ´ErX |I s we can assume that ErX |I s “ 0.

Let X “ lim sup Sn
n and let ε ą 0, D “ tω : X pωq ą εu.

Since X pφωq “ X pωq, D P I .

Define

X ˚pωq “ pX pωq ´ εq1Dpωq, S˚n pωq “ X ˚pωq ` ¨ ¨ ¨ ` X ˚pφn´1ωq

M˚
n pωq “ maxp0, S˚1 pωq, ...,S

˚
n pωqq, Fn “ tM

˚
n ą 0u

F “
ď

n

Fn “

"

sup
kě1

S˚k
k
ą 0

*

“ D.
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

By the Maximal ergodic theorem ErX ˚1pFn ą 0qs ě 0.

Since Er|X ˚|s ď Er|X |s ` ε ă 8, the dominated convergence theorem
implies ErX ˚1Fns Ñ ErX ˚1F s, so ErX ˚1F s ě 0.

Since F “ D P I ,

0 ď ErX ˚1Ds “ ErpX ´ εq1Ds “ ErErX |I s1Ds ´ εPpDq “ ´εPpDq.

Thus 0 “ PpDq “ Pplim supSn{n ą εq. Replacing X with ´X obtains
Sn{nÑ 0 a.s.
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

To get the convergence in L1 we truncate. Let M ą 0,

X 1Mpωq “ X pωq1p|X | ď Mq, X 2Mpωq “ X pωq ´ X 1Mpωq.

By the earlier part of the proof,

1

n

n´1
ÿ

m“0

X 1Mpφ
mωq Ñ ErX 1M |I s a.s.

By bounded convergence

E

«ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n´1
ÿ

m“0

X 1Mpφ
mωq ´ ErX 1M |I s

ˇ

ˇ

ˇ

ˇ

ˇ

ff

Ñ 0.
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Pointwise ergodic theorem

Proof of Pointwise ergodic theorem.

To handle X 2M , bound

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n´1
ÿ

m“0

X 2Mpφ
mωq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Er|X 2M |s.

Since Er|ErX 2M |I s|s ď ErEr|X 2M ||I ss “ Er|X 2M |s.

It follows

lim sup
nÑ8

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n´1
ÿ

m“0

X pφmωq ´ ErX |I s

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď 2 Er|X 2M |s.
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Wiener’s maximal equality

Theorem

Let Xjpωq “ X pφjωq, Skpωq “ X0pωq ` ¨ ¨ ¨ ` Xk´1pωq, Akpωq “
Sk pωq

k ,
and Dk “ maxpA1, ...,Akq. If α ą 0, then

ProbpDk ą αq ď α´1 Er|X |s.

Proof.

Let B “ tDk ą αu. It follows from the Maximal ergodic lemma that

Er|X |s ě

ż

B
XdP ě

ż

B
αdP “ αProbpBq.
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Markov chains

Example

(i.i.d. sequence) Since I is trivial, the ergodic theorem implies

1

n

n´1
ÿ

m“0

Xm Ñ ErX0s

a.s. and in L1.

(Markov chains) Let tXnu be an irreducible Markov chain with
stationary measure π ą 0. Then I is trivial again, so

1

n

n´1
ÿ

m“0

f pXmq Ñ
ÿ

x

f pxqπpxq

a.s. and in L1.
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Irrational rotations

Example

(irrational rotations) Let Ω “ r0, 1q, φpωq “ ω ` θ mod 1 where θ is
irrational. Again I is trivial, so for A a Borel set,

1

n

n´1
ÿ

m“0

1pφmω P Aq Ñ |A|, a.s.
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Irrational rotations

Theorem

If A “ ra, bq is an interval then the exceptional set of rotations is empty.

Proof.

Approximate the characteristic function of the interval from above and
below by trigonometric polynomials. Use that

řN
n“0 epkθq “

1´eppN`1qkθq
1´epkθq ,

which is bounded.
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Benford’s law

Let θ “ log10 2 and for 1 ď k ď 9, Ak “ rlog10 k , log10pk ` 1qq. By the
previous result,

1

n

n´1
ÿ

m“0

1Ak
pφmp0qq Ñ log10

k ` 1

k
.

This says that the first digit of the powers of 2 is asymptotically
distributed according to Benford’s law.
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Recurrence

Theorem

Let X1,X2, ... be a stationary sequence taking values in Rd and
Sk “ X1 ` ¨ ¨ ¨ `Xk , let A “ tSk ‰ 0 all k ě 1u, and let Rn “ |tS1, ...,Snu|
be the number of points visited at time n. As nÑ8,

Rn

n
Ñ Er1A|I s a.s.
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Recurrence

Proof.

Let X1,X2, ... constructed on pRdqt0,1,...u with Xnpωq “ ωn, with φ
the shift operator.

We have Rn ě
řn

m“1 1Apφ
mωq. Thus the ergodic theorem gives

lim inf
nÑ8

Rn

n
ě Er1A|I s, a.s.

Let Ak “ tS1 ‰ 0,S2 ‰ 0, ...,Sk ‰ 0u. One has

Rn ď k `
n´k
ÿ

m“1

1Ak
pφmωq

so lim supnÑ8
Rn
n ď Er1Ak

|I s. Since Er1Ak
|I s Ó Er1A|I s, the claim

follows.
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Recurrence

Theorem

Let X1,X2, ... be a stationary sequence taking values in Z with
Er|Xi |s ă 8. Let Sn “ X1 ` ¨ ¨ ¨ ` Xn, and let A “ tS1 ‰ 0, S2 ‰ 0, ...u.

If ErX1|I s “ 0 then ProbpAq “ 0.

Also, if ProbpAq “ 0 then ProbpSn “ 0 i.o.q “ 1.
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Recurrence

Proof.

If ErX1|I s “ 0 then the ergodic theorem implies Sn{nÑ 0 a.s.

For any K ,

lim sup
nÑ8

ˆ

max
1ďkďn

|Sk |

n

˙

ď max
kěK

|Sk |

k
.

This tends to 0 as K Ñ8, so Rn
n Ñ 0, and ProbpAq “ 0.

Let Fj “ tSi ‰ 0, for i ă j , Sj “ 0u and
Gj ,k “ tSj`i ´ Sj ‰ 0 for 1 ď i ă k , Sj`k ´ Sj “ 0u.

Since ProbpAq “ 0,
ř

ProbpFkq “ 1.
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Recurrence

Proof.

By stationarity, ProbpGj ,kq “ ProbpFkq. Also, for fixed j , the Gj ,k are
disjoint and have union of full measure, so

ÿ

j ,k

ProbpFj X Gj ,kq “ 1.

It follows that ProbpSn “ 0 at least 2 timesq “ 1. Iterating,
ProbpSn “ 0 at least k timesq “ 1 for all k .
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Recurrence

Theorem

Let A be a set and let T0 “ 0, Tn “ inftm ą Tn´1 : Xm P Au. If
ProbpXn P A at least onceq “ 1, then conditioned on X0 P A,
tn “ Tn ´ Tn´1 is a stationary sequence with

ErT1|X0 P As “
1

ProbrX0 P As
.

See Durrett pp. 340-341.
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Recurrence

The result is due to Poincaré.

Theorem

Suppose φ : Ω Ñ Ω preserves Prob in the sense that Prob ˝φ´1 “ Prob.
Let TA “ inftn ě 1 : φnpωq P Au.

1 TA ă 8 a.s. on A

2 tφnpωq P A i.o.u Ą A

3 If φ is ergodic and ProbpAq ą 0, then Probpφnpωq P A i.o.q “ 1.
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Recurrence

Proof.
1 Let B “ tω P A,TA “ 8u. If ω P φ´mB then φmpωq P A, by
φnpωq R A for n ą m, so the φ´mB are pairwise disjoint. Since φ is
measure preserving, ProbpBq “ 0.

2 Since φk is measure preserving,

0 “ Probpω P A, φnkpωq R A, for all n ě 1q

ě Probpω P A, φmpωq R A, for all m ě kq.

This holds for all k , so the claim follows.

3 B “ tω : φnpωq P A i.o.u is invariant and contains A, hence has
probability 1.

Bob Hough Math 639: Lecture 14 March 28, 2017 34 / 45



The subadditive ergodic theorem

Theorem (Subadditive ergodic theorem)

Suppose Xm,n, 0 ď m ă n satisfy

1 X0,m ` Xm,n ě X0,n

2 tXnk,pn`1qk , n ě 1u is a stationary sequence for each k

3 The distribution of tXm,m`k , k ě 1u does not depend on m.

4 ErX`0,1s ă 8 and for each n, ErX0,ns ě γ0n, where γ0 ą ´8.

Then

1 limnÑ8
1
n ErX0,ns “ infm

1
m ErX0,ms “ γ.

2 X “ limnÑ8
X0,n

n exists a.s. and in L1, so ErX s “ γ.

3 If the stationary sequences in 2 above are ergodic then X “ γ a.s.
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Examples

Example

(Stationary sequences) Suppose ξ1, ξ2, ... is a stationary sequence
with Er|ξk |s ă 8, and let Xm,n “ ξm`1 ` ¨ ¨ ¨ ` ξn. Then
X0,n “ X0,m ` Xm,n.

(Range of a random walk) Suppose ξ1, ξ2, ... is a stationary sequence
and let Sn “ ξ1 ` ¨ ¨ ¨ ` ξn. Let Xm,n “ |tSm`1, ...,Snu|. Then
X0,m ` Xm,n ě X0,n.

(Longest common subsequence) Given ergodic stationary sequences
X1,X2,X3, ... and Y1,Y2,Y3, ..., let
Lm,n “ maxtK : Xik “ Yjk , 1 ď k ď Ku where
m ă i1 ă i2 ă ¨ ¨ ¨ ă iK ď n and m ă j1 ă j2 ă ¨ ¨ ¨ ă jK ď n. Then

L0,m ` Lm,n ě L0,n.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

The proof is in four steps.

We have Er|X0,n|s ď Cn. To check this, use X`0,m ` X`m,n ě X`0,n.

Thus ErX`0,ns ď n ErX`0,1s ă 8. Combine this with ErX0,ns ě γ0n
where γ0 ą ´8.
Let an “ ErX0,ns. Then am ` an´m ě an, which implies

an
n
Ñ inf

mě1

am
m
“ γ.

Bob Hough Math 639: Lecture 14 March 28, 2017 37 / 45



The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Write n “ km ` `. Then

X0,n

n
ď

k

km ` `

X0,m ` ¨ ¨ ¨ ` Xpk´1qm,km
k

`
Xkm,n

n
.

The pointwise ergodic theorem gives

X0,m ` ¨ ¨ ¨ ` Xpk´1qm,km
k

Ñ Am a.s. and in L1

where Am “ ErX0,m|Ims, and Im is shift invariant for Xpk´1qm,km,

k ě 1. For fixed `, ε ą 0, since ErX`0,`s ă 8,

8
ÿ

k“1

ProbpXkm,km`` ą pkm ` `qεq ď
8
ÿ

k“1

ProbpX0,` ą kεq ă 8.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Combining these observations,

X “ lim sup
X0,n

n
ď

Am

m
,

so ErX s ď 1
m ErX0,ms, which implies ErX s ď γ. If the sequences are

ergodic, then X ď γ.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Let X “ lim infnÑ8
X0,n

n . Let ε ą 0 and let Z “ ε` pX _´Mq. Since
ErX s ă 8, Er|Z |s ă 8.

Define Ym,n “ Xm,n ´ pn ´mqZ and Y “ lim infnÑ8
Y0,n

n ď ´ε.
Define Tm “ mintn ě 1 : Ym,m`n ď 0u.
By stationarity, Tm is equal in distribution to T0, so

ErYm,m`11pTm ą Nqs “ ErY0,11pT0 ą Nqs.

Since ProbpT0 ă 8q “ 1, pick N large enough so that

ErY0,11pT0 ą Nqs ď ε.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Define

Sm “

"

Tm on tTm ď Nu
1 on tTm ą Nu

ξm “

"

0 on tTm ď Nu
Ym,m`1 on tTm ą Nu

.

Since Ym,m`Tm ď 0 and Sm “ 1, Ym,m`1 ą 0 on tTm ą Nu we have
Ym,m`Sm ď ξm and ξm ě 0.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Let R0 “ 0 and Rk “ Rk´1 ` SRk´1
. Define K “ maxtk : Rk ď nu. We

have

Y0,n ď YR0,R1`YR1,R2` ...`YRK´1,RK
`YRK ,n ď

n´1
ÿ

m“0

ξm`
N
ÿ

j“1

|Yn´j ,n´j`1|.

Hence,

lim sup
nÑ8

1

n
ErY0,ns ď Erξ0s ď ErY0,11pT0 ą Nqs ď ε.

Thus γ “ limnÑ8
1
n ErX0,ns ď 2ε` ErX _´Ms. Thus γ “ ErX s “ ErX s

and X “ X almost surely.
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The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

See Durrett p. 346 for the convergence in L1.
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Products of random matrices

Example

(Products of random matrices) Suppose A1,A2, ... is a stationary
sequence of k ˆ k matrices with positive entries, and let

αm,npi , jq “ pAm`1 ¨ ¨ ¨Anqpi , jq

Note α0,mp1, 1qαm,np1, 1q ď α0,np1, 1q. Set Xm,n “ ´ logαm,np1, 1q so
X0,m ` Xm,n ě X0,n. Subject to

Er| logAmpi , jq|s ă 8, all i , j

we obtain 1
nX0,n Ñ X a.s.
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First-passage percolation

Example

(First passage percolation) Consider Z2 as a graph with edges connecting
x , y P Z2 when |x ´ y | “ 1. Assign i.i.d. non-negative edge weights τpeq
of finite mean.

If x0 “ x , x1, x2, ..., xn “ y is a path from x to y with
|xm ´ xm´1| “ 1, define the travel time to be

τpx0, x1q ` ¨ ¨ ¨ ` τpxn´1, xnq.

Define the passage time tpx , yq to be the infimum of travel times over
all paths from x to y .

Define Xm,n “ tppm, 0q, pn, 0qq. Since X0,m ` Xm,n ě X0,n, one

obtains
X0,n

n Ñ X a.s. We have X is almost surely constant, since it is
measurable in the tail sigma field.
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