SPRING 2022: MAT 533 PRACTICE FINAL EXAM

Problem 1. Let $a = (a_1, ..., a_n)$ be a vector whose coordinates are linearly independent over \mathbb{Q} . Prove that any Borel measurable set E of $(\mathbb{R}/\mathbb{Z})^n$ which is invariant under translation by a has measure 0 or 1.

Problem 2. Let $C : \mathscr{S}(\mathbb{R}^n) \to C(\mathbb{R}^n)$ be a continuous linear map which commutes with translation. Prove that C is given by convolution with a tempered distribution.

Problem 3. Form an $n \times n$ matrix by giving its entries independent mean 0 variance 1 standard Gaussian variables, then performing the Gram-Schmidt process on its columns treated as vectors. Prove that with probability 1 the resulting matrix is orthogonal, and that the distribution thus obtained is Haar measure on the orthogonal group.

Problem 4. A bi-infinite sequence $\{a_n\}_{n\in\mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$ is positive definite *if*, for all finite sets of complex numbers ϕ_n , $-N \leq n \leq N$, we have

$$\sum_{n,k} a_{n-k} \phi_n \overline{\phi_k} \ge 0.$$

Prove that a sequence $\{a_n\}_{n\in\mathbb{Z}}$ is positive definite if and only if it is the set of Fourier coefficients of a positive measure on \mathbb{R}/\mathbb{Z} . (Hint: first show that these are the Fourier coefficients of a distribution.)

Problem 5. Let $\Omega \subset \mathbb{C}$ be an open domain, and let $f : \Omega \to X$ be a map to a complex Banach space X. The function f is said to be strongly analytic if the difference quotients

$$\lim_{k \to 0} \frac{1}{k} (f(x+k) - f(x))$$

exist at each point. The function f is said to be weakly analytic if, for each bounded linear functional ℓ , $\ell(f(x))$ is an analytic function in the usual sense. Prove that f is strongly analytic if and only if it is weakly analytic. It may help to use the contour formula

$$\frac{1}{h-k} \left[\frac{\ell(f(z+h)) - \ell(f(z))}{h} - \frac{\ell(f(z+k)) - \ell(f(z))}{k} \right]$$
$$= \frac{1}{2\pi i} \int_C \ell(f(\zeta)) \frac{d\zeta}{(\zeta - z - h)(\zeta - z - k)(\zeta - z)}$$

where C is a smooth contour with winding number 1 about z, z+h, z+k.