Problem 1. Suppose \(f \in L^p(\mathbb{R}) \). If there exists \(h \in L^p(\mathbb{R}) \) such that
\[
\lim_{y \to 0} \|y^{-1}(f^{-y} - f) - h\|_p = 0,
\]
we call \(h \) the \textit{strong} \(L^p \) derivative of \(f \) and write \(h = df/dx \). If \(f \in L^p(\mathbb{R}^n) \), \(L^p \) derivatives of \(f \) are defined similarly. If \(p \) and \(q \) are conjugate exponents, \(f \in L^p \), \(g \in L^q \), and the \(L^p \) derivative \(\partial_j f \) exists, then prove \(\partial_j (f \ast g) \) exists in the ordinary sense and equals \((\partial_j f) \ast g\).

Problem 2. Let \(\phi \in L^1(\mathbb{R}^n) \) satisfy \(|\phi(x)| \leq C (1 + |x|)^{-n-\epsilon} \) for some \(C, \epsilon > 0 \), and \(\int \phi(x) dx = a \). For \(t > 0 \), \(\phi_t(x) = t^{-n}\phi(\frac{x}{t}) \). If \(f \in L^p \) define the \(\phi \)-maximal function of \(f \) to be \(M_\phi f(x) = \sup_{t>0} |f \ast \phi_t(x)| \). The \textit{Hardy-Littlewood maximal function} \(Hf \) is \(M_\phi|f| \) where \(\phi \) is the characteristic function of the unit ball, divided by the volume of the ball. Show that there is a constant \(C \), independent of \(f \), such that \(M_\phi f \leq CHf \).

Problem 3. Young’s inequality shows that \(L^1 \) is a Banach algebra with convolution as multiplication.

1. If \(I \) is an ideal in the algebra \(L^1 \), prove that its closure is, also.
2. If \(f \in L^1 \), the smallest closed ideal in \(L^1 \) containing \(f \) is the smallest closed subspace of \(L^1 \) containing translates of \(f \).

Problem 4. Show that if \(f \in L^1(\mathbb{R}^n) \), \(f \) is continuous at 0, and \(\hat{f} \geq 0 \), then \(\hat{f} \in L^1 \).

Problem 5. Let \(f \) be a function on \(\mathbb{T}^1 \) and \(A_r f \) the \(r \)th Abel mean of the Fourier series of \(f \). Check that

1. \(A_r f = f \ast P_r \) where \(P_r(x) = \sum_{-\infty}^{\infty} r^{|k|} e^{2\pi i k x} \) is the Poisson kernel for \(\mathbb{T}^1 \).
2. \(P_r(x) = \frac{1 - r^2}{1 + r^2 - 2r \cos 2\pi x} \).
Problem 6. Given $f \in L^1(T^1)$, let $S_m f(x) = \sum_{-m}^{m} \hat{f}(k)e^{2\pi ikx}$ and

$$\sigma_m f(x) = \sum_{-m}^{m} \hat{f}(k) \left(1 - \frac{|k|}{m+1}\right)e^{2\pi ikx}.$$

Prove the following.

1. $\sigma_m f = \frac{1}{m+1} \sum_{0}^{m} S_k f$.
2. If D_k is the kth Dirichlet kernel, we have $\sigma_m f = f \ast F_m$ where $F_m = \frac{1}{m+1} \sum_{0}^{m} D_k$. F_m is the mth Fejér kernel on T^1.
3. $F_m(x) = \frac{\sin^2((m+1)\pi x)}{(m+1)\sin^2\pi x}$.

Problem 7. Prove the following.

1. If D_m is the mth Dirichlet kernel, $\|D_m\|_1 \to \infty$ as $m \to \infty$.
2. The Fourier transform is not surjective from $L^1(T^1)$ to $C_0(\mathbb{Z})$.
