MATH 533, SPRING 2022, HW6

Problem 1. Let μ, ν be Radon measures on X, Y, not necessarily σ-finite. If f is a nonnegative l.s.c. function on $X \times Y$, show that $x \rightarrow \int f_{x} d \nu$ and $y \rightarrow \int f^{y} d \mu$ are Borel measurable and $\int f d(\mu \hat{\times} \nu)=\iint f d \mu d \nu=\iint f d \nu d \mu$.
Problem 2. The following gives an example of a smooth function not equal to its Taylor expansion at 0 . Let $f(t)=e^{-1 / t}$ for $t>0, f(t)=0$ for $t \leq 0$. Check that
(1) For $k \in \mathbb{N}$ and $t>0, f^{(k)}(t)=P_{k}(1 / t) e^{-1 / t}$ where P_{k} is a polynomial.
(2) $f^{(k)}(0)$ exists and is equal to 0 for all k.

Problem 3. If $f \in L^{\infty}$ and $\left\|f^{y}-f\right\|_{\infty} \rightarrow 0$ as $y \rightarrow 0$, then f agrees a.e. with a uniformly continuous function.

