MATH 533, SPRING 2022, HW4

DUE FEBRUARY 21

Prove the following statements regarding a Hilbert space \mathcal{X}.
Problem 1. (Polarization identity) For any $x, y \in \mathcal{X}$,

$$
4\langle x, y\rangle=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2} .
$$

Problem 2. If $E \subset \mathcal{X},\left(E^{\perp}\right)^{\perp}$ is the smallest closed subspace of \mathcal{X} containing E.

Problem 3. Every closed convex set $K \subset \mathcal{X}$ has a unique element of minimal norm.
Problem 4. Let \mathcal{X} be an infinite-dimensional Hilbert space.
(1) Every orthonormal sequence in \mathcal{X} converges weakly to 0 .
(2) The unit sphere $S=\{x:\|x\|=1\}$ is weakly dense in the unit ball $B=\{x:\|x\| \leq 1\}$.
Problem 5. Let A and B be non-empty sets. Then $\ell^{2}(A)$ is isomorphic to $\ell^{2}(B)$ iff A and B have equal cardinality.
Problem 6. (The mean ergodic theorem) Let U be an unitary operator on the Hilbert space $\mathcal{X}, \mathcal{M}=\{x: U x=x\}, P$ the orthogonal projection onto \mathcal{M}, and $S_{n}=\frac{1}{n} \sum_{0}^{n-1} U^{j}$. Then $S_{n} \rightarrow P$ strongly.

In the following problems X is a locally compact Hausdorff space.
Problem 7. Let Y be a closed subset of X, and μ a Radon measure on Y. Prove that $I(f)=\left.\int f\right|_{Y} d \mu$ is a positive linear functional on $C_{c}(X)$, and its induced Radon measure ν on X is given by $\nu(E)=\mu(E \cap Y)$.
Problem 8. Let μ be a Radon measure on X. Let N be the union of all open $U \subset X$ such that $\mu(U)=0$. Then N is open, $\mu(N)=0$, and if V is open and $V \backslash N \neq \emptyset$ then $\mu(V)>0 . N^{c}$ is called the support of μ. Prove $x \in \operatorname{supp}(\mu)$ iff $\int f d \mu>0$ for every $f \in C_{c}(X,[0,1])$ s.t $f(x)>0$.

