Each problem is worth 10 points.
Problem 1.
 a. State and prove Bessel’s inequality for a Hilbert space \(\mathcal{H} \).

b. Using Bessel’s inequality, or otherwise, prove that if \(\mathcal{H} \) has a countable orthonormal basis, then any orthonormal basis of \(\mathcal{H} \) is countable.
Problem 2.

a. Let \mathcal{X} be an infinite dimensional normed vector space. Prove that the unit ball $B_1 = \{ x \in \mathcal{X} : \|x\| \leq 1 \}$ is not compact in the norm topology.

b. Prove Alaoglu’s Theorem: Let \mathcal{X} be a Banach space. Prove that the unit ball in \mathcal{X}^*

$$B_1 = \{ \ell \in \mathcal{X}^* : \|\ell\| \leq 1 \}$$

is compact in the weak-* topology. (Hint: identify B_1 with a subspace of $\prod_{x \in \mathcal{X}} [-\|x\|, \|x\|].$)
Problem 3. Define the following sequence spaces of sequences of real numbers.

- For \(p \geq 1 \), \(\ell_p = \{a = \{a_n\}_{n=1}^\infty : \|a\|_p = \sum_n |a_n|^p \} \)
- \(\ell_\infty = \{a = \{a_n\}_{n=1}^\infty : \|a\|_\infty = \sup_n |a_n| \} \)
- \(c_0 = \{a = \{a_n\} : \lim_n a_n = 0, \|a\|_\infty = \sup_n |a_n| \}. \)

a. Prove that \(\ell_p \) is separable, but \(\ell_\infty \) is not.

b. Prove \(c_0^* = \ell_1 \), \(\ell_1^* = \ell_\infty \) but \(\ell_\infty^* \neq \ell_1 \) by using Hahn-Banach. Give an example of a sequence in \(\ell_1 \) which does not converge weakly, but converges weak-*.
Problem 4. Let $\phi \in C_c^\infty(\mathbb{R}^n)$, $\int \phi = 1$, and for real $t > 0$, let $\phi_t(x) = t^{-n}\phi\left(\frac{x}{t}\right)$. Let $1 \leq p < \infty$ and let $f \in L^p(\mathbb{R}^n)$. Prove that $\phi_t * f \in C_c^\infty(\mathbb{R}^n)$ and $\phi_t * f \to f$ in L^p as $t \downarrow 0$.
Problem 5. Let μ be a Radon measure on X. Prove that μ is inner regular on Borel sets of finite measure.
Problem 6.
a. Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $L(\mathcal{X}, \mathcal{Y})$ be the bounded linear maps between \mathcal{X} and \mathcal{Y}. Give a neighborhood base at 0 for the strong and weak operator topologies.

b. Let \mathcal{X} and \mathcal{Y} be Banach spaces and let $T_n \in L(\mathcal{X}, \mathcal{Y})$ be such that, for each $x \in \mathcal{X}$, \{\{T_n x\}\} is Cauchy. Prove that T_n converges strongly to some $T \in L(\mathcal{X}, \mathcal{Y})$.