Each problem is worth 10 points.

Problem 1.

a. State and prove Bessel's inequality for a Hilbert space \mathcal{H}.
b. Using Bessel's inequality, or otherwise, prove that if \mathcal{H} has a countable orthonormal basis, then any orthonormal basis of \mathcal{H} is countable.

Problem 2.

a. Let \mathcal{X} be an infinite dimensional normed vector space. Prove that the unit ball $B_{1}=\{x \in \mathcal{X}:\|x\| \leq 1\}$ is not compact in the norm topology.
b. Prove Alaoglu's Theorem: Let \mathcal{X} be a Banach space. Prove that the unit ball in \mathcal{X}^{*}

$$
B_{1}=\left\{\ell \in \mathcal{X}^{*}:\|\ell\| \leq 1\right\}
$$

is compact in the weak-* topology. (Hint: identify B_{1} with a subspace of $\prod_{x \in \mathcal{X}}[-\|x\|,\|x\|]$.)

Problem 3. Define the following sequence spaces of sequences of real numbers.

- For $p \geq 1, \ell_{p}=\left\{a=\left\{a_{n}\right\}_{n=1}^{\infty}:\|a\|_{p}^{p}=\sum_{n}\left|a_{n}\right|^{p}\right\}$
- $\ell_{\infty}=\left\{a=\left\{a_{n}\right\}_{n=1}^{\infty}:\|a\|_{\infty}=\sup _{n}\left|a_{n}\right|\right\}$
- $c_{0}=\left\{a=\left\{a_{n}\right\}: \lim _{n} a_{n}=0,\|a\|_{\infty}=\sup _{n}\left|a_{n}\right|\right\}$.
a. Prove that ℓ_{p} is separable, but ℓ_{∞} is not.
b. Prove $c_{0}^{*}=\ell_{1}, \ell_{1}^{*}=\ell_{\infty}$ but $\ell_{\infty}^{*} \neq \ell_{1}$ by using Hahn-Banach. Give an example of a sequence in ℓ_{1} which does not converge weakly, but converges weak-*.

Problem 4. Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \int \phi=1$, and for real $t>0$, let $\phi_{t}(x)=$ $t^{-n} \phi\left(\frac{x}{t}\right)$. Let $1 \leq p<\infty$ and let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Prove that $\phi_{t} * f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\phi_{t} * f \rightarrow f$ in L^{p} as $t \downarrow 0$.

Problem 5. Let μ be a Radon measure on X. Prove that μ is inner regular on Borel sets of finite measure.

Problem 6.

a. Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $L(\mathcal{X}, \mathcal{Y})$ be the bounded linear maps between \mathcal{X} and \mathcal{Y}. Give a neighborhood base at 0 for the strong and weak operator topologies.
b. Let \mathcal{X} and \mathcal{Y} be Banach spaces and let $T_{n} \in L(\mathcal{X}, \mathcal{Y})$ be such that, for each $x \in \mathcal{X},\left\{T_{n} x\right\}$ is Cauchy. Prove that T_{n} converges strongly to some $T \in L(\mathcal{X}, \mathcal{Y})$.

