MATH 533, SPRING 2020, HW3

DUE IN CLASS, FEBRUARY 17

Problem 1. Let $\mathcal{Y} = C([0,1])$ and $\mathcal{X} = C^1([0,1])$, both equipped with the uniform norm. Prove:

- (1) \mathcal{X} is not complete.
- (2) The map $d/dx : \mathcal{X} \to \mathcal{Y}$ is closed but not bounded.

Problem 2. Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $\{T_n\}$ be a sequence in $L(\mathcal{X}, \mathcal{Y})$ such that $\lim T_n x$ exists for every $x \in \mathcal{X}$. If $Tx = \lim T_n x$, prove that $T \in L(\mathcal{X}, \mathcal{Y})$.

Problem 3. Let \mathcal{X} be a vector space of countably infinite dimension. Prove that there is no norm on \mathcal{X} with respect to which \mathcal{X} is complete.

Problem 4. Let E_n be the set of all $f \in C([0,1])$ for which there exists $x_0 \in [0,1]$ such that $|f(x) - f(x_0)| \le n|x - x_0|$ for all $x \in [0,1]$.

- (1) Prove that E_n is nowhere dense in C([0,1]).
- (2) Show the set of nowhere differentiable functions is residual in C([0,1]).

Problem 5. Let \mathcal{X} be a normed vector space. Prove the following.

- (1) Every weakly convergent sequence in \mathcal{X} , and every weak * convergent sequence in \mathcal{X} *, is bounded w.r.t. the norm.
- (2) Every weakly compact subset of \mathcal{X} , and every weak * compact subset of \mathcal{X}^* , is bounded w.r.t. the norm.
- (3) If \mathcal{X} is infinite dimensional, every nonempty weakly open set in \mathcal{X} , and every nonempty weak * open set in X^* is unbounded w.r.t. the norm.

Problem 6. If \mathcal{X} is a separable normed vector space, show that the weak * topology on the closed unit ball in \mathcal{X}^* is second countable and hence metrizable.

Problem 7. Show that a linear subspace of a normed vector space \mathcal{X} is norm closed iff it is weakly closed.