PROBLEM SET 2

JIAHAO HU

Problem 1.

Proof. Continuity of T'f follows from the uniform continuity of K and the following
estimation
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This estimation also proves F = {T'f : || f|l. < 1} is equicontinuous. Note A
is pointwise bounded since
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Then by Arzela-Ascoli, F is precompact. ([

Problem 2.

Proof. For any x € U, we may choose r sufficiently small such that B,(z) C U.
Since {f,} is uniformly bounded on compact subsets of U, sup.cp, (4)nen |fn(2)]
is finite and {f,(z)} is bounded for all x € U.

Let v = 0B, (x) with counterclockwise orientation. Then if |z —y| < r/2, by
Cauchy integral formula
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Therefore {f,} is equicontinuous. So by Arzela-Ascoli, f,, has a subsequence that
uniformly converges to a function f € C(U). Replacing {f,} by a subsequence
if necessary, we may assume f, — f uniformly on compact subsets, then fv f=

f7 lim,, f, = lim,, [ _ fa = 0. So by Morera’s theorem, f is homolorphic. O
Problem 3.

Proof. Tt is clear the algebra A generated by C'(X) x C(Y) contains non-zero con-

stant functions, so by Stone-Weierstrass theorem, it suffices to prove the algebra A

separate points. Let (z,y) # (¢/,y') € X x Y, we may assume x # z’. Since X is
1
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compact Hausdorff, by Urysohn’s lemma we can find g € C'(X) so that g(x) # g(z),
and let h be a non-zero constant function on Y, then f(z,y) = g(z)h(y) € A seper-
ates (z,y) and (2/,y"). O

Problem 4.

Proof. To see ||p|| = |p|(X) is a norm, we note
o [l = Aul(X) = M) = [Alla] for all A € C, € M(X);
o vl = s+ VI(X) <l (X) + P (X) = lall + Iv] for all g1, € M(X);
o if [|u|| = 0, then for any E € M, |u(E)| < [p|(E) < |u[(X) = [|u] =0, so
w=0.
To see (M(X),]| - ||) is a Banach space, we show every absolutely conver-
gent sequence {u,} is convergent. Now for any E € M(X), since Y |un(E)| =
Yo ltn|(E) <37, lnll < 00, d° pin(E) converges absolutely to some number p(E).

In particular, || >, tn — pf| = limy o0 | Zjlv tn — p|(X) = 0. It remains to check
1 is a complex measure on X. Indeed,

.« W(@) =, 1(2) =5, 0=0

o let E,, € M, m € N be disjoint, then
H(UmEm) = Z,Un(umEm) = Z Z,Un(Em)

= Z Z pn(Ey)  since Z tn(Em) absolutely converges

= Z w(Ey,) and this convergence is absolute.

Problem 5.

Proof. (1) Tt is quite standard to check || - ||, is a norm, we omit this part. To
show this norm is complete, let {f,,} be a Cauchy sequence in A, [0, 1], then
o [fn(0) = fm(0)| < || fn — fmlla, hence {f,(0)} is Cauchy and converges.
o for € (0, 1], [fu(e) — fon(2)] < [lf— Fnll 217+ |£a(0) ~ Fn(0)], hence
{fn(2)} is Cauchy and converges.

x)
Define f(z) = lim,, f,(z) for all z € [0,1]. Then

|f(z) = fF)] < [f(x) = fa(@)] + [fa(@) = fu()| + | faly) — f(y)]
<|f(@) = fulx)| + sup [ falla |z =yl +1fa(y) = F(Y)]

Taking n — co, we have
[f (@) = f(y)] <sup | fulla - |z —y|*

therefore || f|lo < |f(0)| 4 sup,, || frlla < oo, this proves f € A,[0,1]. More-
over,

|fn(2) = fa(y) = [fm(@) = f @ < W fo = flla - 2 — y|®
<e-|lx—y|* for n,m > N
Taking m — oo, we have
[fa(@) = faly) = [f(x) = W] < elz —y|* n>N.
$0 [ fn — flla < 1fn(0) — f(0)] + € for n big, this implies || f, — f]la — 0.
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(2) If f € A\p, then it follows from definition of A that f’ exists and is identically
zero, so f is a constant function. Now if 0 < o < 1, let {f,} C A[0,1] be
a convergent sequence and f be its limit, we show f € \,[0,1]. For any
y € [0,1], we have

(@) = fW)l _ IIf = ful(2) = |f = ful@)] N |fo(z) — fa(y)]
|z —yl*  — |z —y[® |z —y[®

< ||f—fn||a+w

So
o @) = )

Ty |x_y‘(, < ||f_fn||06 — 0.

This proves f € A[0, 1], hence A, [0,1] is closed.

Problem 6.

Proof. Boundedness of f implies countinuity of f, thus implies closedness of f~1({0}).
Conversely if f~1({0}) is closed, we show f is bounded. Otherwise one can find a
sequence {z,} in X with ||z,|| =1 and 0 < A\, = f(z,) — co. Moreover since f
cannot be identically zero, we can find y € X\ f~1({0}) with f(y) = 1. Now con-
sider the sequence {y, = z,/\, — y}. Notice that f(y,) = f(zn)/ n — f(y) = 0,
so {yn} C f7H({0}). Meanwhile [y, — y|| = [|[n/An| = 1/An = 0, s0 yy converges
to y. By closedness, y € f~1({0}), but this contradicts f(y) = 1. O

Problem 7.

Proof. Consider the partial ordered set
P = {N closed subspace of X : NN M = 0}

whose partial order is the inclusion. P is non-empty since {0} € P, then by Zorn’s
lemma P has a maximal element N'. We claim that M + N = X. Otherwise, one
can find a non-zero vector x € X'\(M+N). Define Ny = N +Cx, then N\ynM =0
and N' G Np.

Moreover, Ny is closed. To see this, let z,, = y, + A,z € Ny be a convergent
sequence with limit z € X, where y,, € N, \,, € C are uniquely determined by x,,.
By Hahn-Banach theorem, there is a countinuous function f such that f|5 = 0 and
f(z) =1, then f(x,) = A\, converges to f(z) =: A. Therefore y,, = z, — \yz € N
converges to z—Az. Thus by closedness of N, z— Az € N, hence z = (z—Az)+ Az €
Ny. So N is closed, thus Ny € P, but this contradicts maximality of N. O

Remark. Notice that we just showed: if N is a closed subspace of a normed vector
space X and x € X\N, then N + Cx is closed. Then by induction one can prove
if M is finite dimensional and M NN = 0 then M + N is closed. In particular,
every finite dimensional subspace of a normed vector space is closed.

Problem 8.

Proof. Let {fn}nen be a countable dense subset in X*. For each n choose z,, € X
with ||z,] = 1 such that f,(z,) > || fnll/2. We show the countable set of finite
(Q+ iQ)-linear combinations of {x;, },en is dense in X'. By density of Q +iQ in C
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and Hahn-Banach theorem, it suffices to show: if f € A* vanishes on z,, for all n,
then f = 0. To prove this, we notice that for all n,

[fnll < 21f () = fu(@n)] < 20f = falllzall = 2(1f = fall,
thus

IFF< S = Full + 1l < 3IF = full-
Since {f,} is dense in X'*, this shows || f|| = 0,i.e. f=0. O



