PROBLEM SET 2

JIAHAO HU

Problem 1.

Proof. Continuity of Tf follows from the uniform continuity of K and the following estimation

$$|Tf(x) - Tf(x')| \le \int_0^1 |K(x,y) - K(x',y)| |f(y)| dy$$

$$\le \sup_{y \in [0,1]} |K(x,y) - K(x',y)| \cdot \sup_{[0,1]} |f|$$

This estimation also proves $\mathcal{F} = \{Tf : ||f||_u \leq 1\}$ is equicontinuous. Note A is pointwise bounded since

$$|Tf(x)| \le \int_0^1 |K(x,y)| |f(y)| dy \le \sup_{[0,1] \times [0,1]} |K| \cdot \sup_{[0,1]} |f|.$$

Then by Arzela-Ascoli, ${\mathcal F}$ is precompact.

Problem 2.

Proof. For any $x \in U$, we may choose r sufficiently small such that $\overline{B}_r(x) \subset U$. Since $\{f_n\}$ is uniformly bounded on compact subsets of U, $\sup_{z \in \overline{B}_r(x), n \in \mathbb{N}} |f_n(z)|$ is finite and $\{f_n(x)\}$ is bounded for all $x \in U$.

Let $\gamma = \partial B_r(x)$ with counterclockwise orientation. Then if |x - y| < r/2, by Cauchy integral formula

$$\begin{split} |f_n(x) - f_n(y)| &= \frac{1}{2\pi} |\int_{\gamma} \frac{f_n(z)}{z - x} - \frac{f_n(z)}{z - y} dz| \\ &\leq \frac{1}{2\pi} \int_{\gamma} \frac{|f_n(z)| \cdot |x - y|}{|z - x| \cdot |z - y|} dz \\ &\leq \frac{1}{2\pi} \sup_{z \in \bar{B}_r(x), n \in \mathbb{N}} |f_n(z)| \cdot |x - y| \cdot \int_{\gamma} \frac{1}{|z - x|} \cdot \frac{1}{|z - x| - |x - y|} dz \\ &\leq \frac{2}{r} \sup_{z \in \bar{B}_r(x), n \in \mathbb{N}} |f_n(z)| \cdot |x - y| \quad \text{note } |z - x| = r \text{ and } |x - y| < r/2. \end{split}$$

Therefore $\{f_n\}$ is equicontinuous. So by Arzela-Ascoli, f_n has a subsequence that uniformly converges to a function $f \in C(U)$. Replacing $\{f_n\}$ by a subsequence if necessary, we may assume $f_n \to f$ uniformly on compact subsets, then $\int_{\gamma} f = \int_{\gamma} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{\gamma} f_n = 0$. So by Morera's theorem, f is homolorphic. \Box

Problem 3.

Proof. It is clear the algebra \mathcal{A} generated by $C(X) \times C(Y)$ contains non-zero constant functions, so by Stone-Weierstrass theorem, it suffices to prove the algebra \mathcal{A} separate points. Let $(x, y) \neq (x', y') \in X \times Y$, we may assume $x \neq x'$. Since X is

compact Hausdorff, by Urysohn's lemma we can find $g \in C(X)$ so that $g(x) \neq g(x')$, and let h be a non-zero constant function on Y, then $f(x, y) = g(x)h(y) \in \mathcal{A}$ seperates (x, y) and (x', y').

Problem 4.

Proof. To see $\|\mu\| = |\mu|(X)$ is a norm, we note

- $\|\lambda\mu\| = |\lambda\mu|(X) = |\lambda||\mu|(X) = |\lambda|||\mu||$ for all $\lambda \in \mathbb{C}, \mu \in M(X)$;
- $\|\mu + \nu\| = |\mu + \nu|(X) \le |\mu|(X) + |\nu|(X) = \|\mu\| + \|\nu\|$ for all $\mu, \nu \in M(X)$;
- if $\|\mu\| = 0$, then for any $E \in \mathcal{M}$, $|\mu(E)| \le |\mu|(E) \le |\mu|(X) = \|\mu\| = 0$, so $\mu = 0$.

To see $(M(X), \|\cdot\|)$ is a Banach space, we show every absolutely convergent sequence $\{\mu_n\}$ is convergent. Now for any $E \in M(X)$, since $\sum_n |\mu_n(E)| = \sum_n |\mu_n|(E) \le \sum_n |\mu_n\| < \infty$, $\sum \mu_n(E)$ converges absolutely to some number $\mu(E)$. In particular, $\|\sum_n \mu_n - \mu\| = \lim_{N \to \infty} |\sum_1^N \mu_n - \mu|(X) = 0$. It remains to check μ is a complex measure on X. Indeed,

• $\mu(\emptyset) = \sum_{n} \mu_n(\emptyset) = \sum_{n} 0 = 0$ • let $E_m \in \mathcal{M}, m \in \mathbb{N}$ be disjoint, then $\mu(\bigcup_m E_m) = \sum_{n} \mu_n(\bigcup_m E_m) = \sum_{n} \sum_{m} \mu_n(E_m)$ $= \sum_{m} \sum_{n} \mu_n(E_m)$ since $\sum_{m} \mu_n(E_m)$ absolutely converges $= \sum_{m} \mu(E_m)$ and this convergence is absolute.

Problem 5.

Proof. (1) It is quite standard to check $\|\cdot\|_{\alpha}$ is a norm, we omit this part. To show this norm is complete, let $\{f_n\}$ be a Cauchy sequence in $\Lambda_{\alpha}[0, 1]$, then

- $|f_n(0) f_m(0)| \le ||f_n f_m||_{\alpha}$, hence $\{f_n(0)\}$ is Cauchy and converges. • for $x \in (0, 1], |f_n(x) - f_m(x)| \le ||f_n - f_m|||x|^{\alpha} + |f_n(0) - f_m(0)|$, hence
- $\{f_n(x)\}$ is Cauchy and converges.

Define $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in [0, 1]$. Then

$$\begin{aligned} |f(x) - f(y)| &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \\ &\leq |f(x) - f_n(x)| + \sup_n \|f_n\|_\alpha \cdot |x - y|^\alpha + |f_n(y) - f(y)| \end{aligned}$$

Taking $n \to \infty$, we have

$$|f(x) - f(y)| \le \sup_{n} ||f_n||_{\alpha} \cdot |x - y|^{\alpha}$$

therefore $||f||_{\alpha} \leq |f(0)| + \sup_{n} ||f_{n}||_{\alpha} < \infty$, this proves $f \in \Lambda_{\alpha}[0, 1]$. Moreover,

$$|f_n(x) - f_n(y) - [f_m(x) - f_m(y)]| \le ||f_n - f_m||_{\alpha} \cdot |x - y|^{\alpha}$$
$$\le \varepsilon \cdot |x - y|^{\alpha} \quad \text{for } n, m > N_{\varepsilon}$$

Taking $m \to \infty$, we have

$$|f_n(x) - f_n(y) - [f(x) - f(y)]| \le \varepsilon |x - y|^{\alpha} \quad n > N_{\varepsilon}$$

so $||f_n - f||_{\alpha} \le |f_n(0) - f(0)| + \varepsilon$ for n big, this implies $||f_n - f||_{\alpha} \to 0$.

(2) If $f \in \lambda_1$, then it follows from definition of λ_1 that f' exists and is identically zero, so f is a constant function. Now if $0 < \alpha < 1$, let $\{f_n\} \subset \lambda_{\alpha}[0,1]$ be a convergent sequence and f be its limit, we show $f \in \lambda_{\alpha}[0,1]$. For any $y \in [0,1]$, we have

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le \frac{||f - f_n|(x) - |f - f_n|(y)|}{|x - y|^{\alpha}} + \frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}} \le ||f - f_n||_{\alpha} + \frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}}$$

So

$$\lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le ||f - f_n||_{\alpha} \to 0.$$

This proves $f \in \lambda_{\alpha}[0, 1]$, hence $\lambda_{\alpha}[0, 1]$ is closed.

Problem 6.

Proof. Boundedness of f implies countinuity of f, thus implies closedness of $f^{-1}(\{0\})$. Conversely if $f^{-1}(\{0\})$ is closed, we show f is bounded. Otherwise one can find a sequence $\{x_n\}$ in \mathcal{X} with $||x_n|| = 1$ and $0 < \lambda_n = f(x_n) \to \infty$. Moreover since f cannot be identically zero, we can find $y \in \mathcal{X} \setminus f^{-1}(\{0\})$ with f(y) = 1. Now consider the sequence $\{y_n = x_n/\lambda_n - y\}$. Notice that $f(y_n) = f(x_n)/\lambda_n - f(y) = 0$, so $\{y_n\} \subset f^{-1}(\{0\})$. Meanwhile $||y_n - y|| = ||x_n/\lambda_n|| = 1/\lambda_n \to 0$, so y_n converges to y. By closedness, $y \in f^{-1}(\{0\})$, but this contradicts f(y) = 1.

Problem 7.

Proof. Consider the partial ordered set

 $\mathcal{P} = \{ N \text{ closed subspace of } \mathcal{X} : N \cap \mathcal{M} = 0 \}$

whose partial order is the inclusion. \mathcal{P} is non-empty since $\{0\} \in \mathcal{P}$, then by Zorn's lemma \mathcal{P} has a maximal element \mathcal{N} . We claim that $\mathcal{M} + \mathcal{N} = \mathcal{X}$. Otherwise, one can find a non-zero vector $x \in \mathcal{X} \setminus (\mathcal{M} + \mathcal{N})$. Define $\mathcal{N}_0 = \mathcal{N} + \mathbb{C}x$, then $\mathcal{N}_0 \cap \mathcal{M} = 0$ and $\mathcal{N} \subsetneq \mathcal{N}_0$.

Moreover, \mathcal{N}_0 is closed. To see this, let $x_n = y_n + \lambda_n x \in \mathcal{N}_0$ be a convergent sequence with limit $z \in \mathcal{X}$, where $y_n \in \mathcal{N}, \lambda_n \in \mathbb{C}$ are uniquely determined by x_n . By Hahn-Banach theorem, there is a countinuous function f such that $f|_{\mathcal{N}} = 0$ and f(x) = 1, then $f(x_n) = \lambda_n$ converges to $f(z) =: \lambda$. Therefore $y_n = x_n - \lambda_n x \in \mathcal{N}$ converges to $z - \lambda x$. Thus by closedness of $\mathcal{N}, z - \lambda x \in \mathcal{N}$, hence $z = (z - \lambda x) + \lambda x \in$ \mathcal{N}_0 . So \mathcal{N}_0 is closed, thus $\mathcal{N}_0 \in \mathcal{P}$, but this contradicts maximality of \mathcal{N} .

Remark. Notice that we just showed: if \mathcal{N} is a closed subspace of a normed vector space \mathcal{X} and $x \in \mathcal{X} \setminus \mathcal{N}$, then $\mathcal{N} + \mathbb{C}x$ is closed. Then by induction one can prove if \mathcal{M} is finite dimensional and $\mathcal{M} \cap \mathcal{N} = 0$ then $\mathcal{M} + \mathcal{N}$ is closed. In particular, every finite dimensional subspace of a normed vector space is closed.

Problem 8.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be a countable dense subset in \mathcal{X}^* . For each n choose $x_n \in \mathcal{X}$ with $||x_n|| = 1$ such that $f_n(x_n) \geq ||f_n||/2$. We show the countable set of finite $(\mathbb{Q} + i\mathbb{Q})$ -linear combinations of $\{x_n\}_{n\in\mathbb{N}}$ is dense in \mathcal{X} . By density of $\mathbb{Q} + i\mathbb{Q}$ in \mathbb{C}

JIAHAO HU

and Hahn-Banach theorem, it suffices to show: if $f \in \mathcal{X}^*$ vanishes on x_n for all n, then f = 0. To prove this, we notice that for all n,

$$||f_n|| \le 2|f(x_n) - f_n(x_n)| \le 2||f - f_n|| ||x_n|| = 2||f - f_n||,$$

thus

Since $\{f_n\}$ is dense in \mathcal{X}^* , this shows ||f|| = 0, i.e. f = 0.