
PROBLEM SET 2

JIAHAO HU

Problem 1.

Proof. Continuity of Tf follows from the uniform continuity of K and the following
estimation

|Tf(x)− Tf(x′)| ≤
∫ 1

0

|K(x, y)−K(x′, y)||f(y)|dy

≤ sup
y∈[0,1]

|K(x, y)−K(x′, y)| · sup
[0,1]

|f |.

This estimation also proves F = {Tf : ‖f‖u ≤ 1} is equicontinuous. Note A
is pointwise bounded since

|Tf(x)| ≤
∫ 1

0

|K(x, y)||f(y)|dy ≤ sup
[0,1]×[0,1]

|K| · sup
[0,1]

|f |.

Then by Arzela-Ascoli, F is precompact. �

Problem 2.

Proof. For any x ∈ U , we may choose r sufficiently small such that B̄r(x) ⊂ U .
Since {fn} is uniformly bounded on compact subsets of U , supz∈B̄r(x),n∈N |fn(z)|
is finite and {fn(x)} is bounded for all x ∈ U .

Let γ = ∂Br(x) with counterclockwise orientation. Then if |x − y| < r/2, by
Cauchy integral formula

|fn(x)− fn(y)| = 1

2π
|
∫
γ

fn(z)

z − x
− fn(z)

z − y
dz|

≤ 1

2π

∫
γ

|fn(z)| · |x− y|
|z − x| · |z − y|

dz

≤ 1

2π
sup

z∈B̄r(x),n∈N
|fn(z)| · |x− y| ·

∫
γ

1

|z − x|
· 1

|z − x| − |x− y|
dz

≤ 2

r
sup

z∈B̄r(x),n∈N
|fn(z)| · |x− y| note |z − x| = r and |x− y| < r/2.

Therefore {fn} is equicontinuous. So by Arzela-Ascoli, fn has a subsequence that
uniformly converges to a function f ∈ C(U). Replacing {fn} by a subsequence
if necessary, we may assume fn → f uniformly on compact subsets, then

∫
γ
f =∫

γ
limn fn = limn

∫
γ
fn = 0. So by Morera’s theorem, f is homolorphic. �

Problem 3.

Proof. It is clear the algebra A generated by C(X)×C(Y ) contains non-zero con-
stant functions, so by Stone-Weierstrass theorem, it suffices to prove the algebra A
separate points. Let (x, y) 6= (x′, y′) ∈ X × Y , we may assume x 6= x′. Since X is
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compact Hausdorff, by Urysohn’s lemma we can find g ∈ C(X) so that g(x) 6= g(x′),
and let h be a non-zero constant function on Y , then f(x, y) = g(x)h(y) ∈ A seper-
ates (x, y) and (x′, y′). �

Problem 4.

Proof. To see ‖µ‖ = |µ|(X) is a norm, we note

• ‖λµ‖ = |λµ|(X) = |λ||µ|(X) = |λ|‖µ‖ for all λ ∈ C, µ ∈M(X);
• ‖µ+ ν‖ = |µ+ ν|(X) ≤ |µ|(X) + |ν|(X) = ‖µ‖+ ‖ν‖ for all µ, ν ∈M(X);
• if ‖µ‖ = 0, then for any E ∈ M, |µ(E)| ≤ |µ|(E) ≤ |µ|(X) = ‖µ‖ = 0, so
µ = 0.

To see (M(X), ‖ · ‖) is a Banach space, we show every absolutely conver-
gent sequence {µn} is convergent. Now for any E ∈ M(X), since

∑
n |µn(E)| =∑

n |µn|(E) ≤
∑
n ‖µn‖ <∞,

∑
µn(E) converges absolutely to some number µ(E).

In particular, ‖
∑
n µn − µ‖ = limN→∞ |

∑N
1 µn − µ|(X) = 0. It remains to check

µ is a complex measure on X. Indeed,

• µ(∅) =
∑
n µn(∅) =

∑
n 0 = 0

• let Em ∈M,m ∈ N be disjoint, then

µ(∪mEm) =
∑
n

µn(∪mEm) =
∑
n

∑
m

µn(Em)

=
∑
m

∑
n

µn(Em) since
∑
m

µn(Em) absolutely converges

=
∑
m

µ(Em) and this convergence is absolute.

�

Problem 5.

Proof. (1) It is quite standard to check ‖ · ‖α is a norm, we omit this part. To
show this norm is complete, let {fn} be a Cauchy sequence in Λα[0, 1], then
• |fn(0)−fm(0)| ≤ ‖fn−fm‖α, hence {fn(0)} is Cauchy and converges.
• for x ∈ (0, 1], |fn(x)−fm(x)| ≤ ‖fn−fm‖|x|α+ |fn(0)−fm(0)|, hence
{fn(x)} is Cauchy and converges.

Define f(x) = limn fn(x) for all x ∈ [0, 1]. Then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ |f(x)− fn(x)|+ sup

n
‖fn‖α · |x− y|α + |fn(y)− f(y)|

Taking n→∞, we have

|f(x)− f(y)| ≤ sup
n
‖fn‖α · |x− y|α

therefore ‖f‖α ≤ |f(0)|+ supn ‖fn‖α <∞, this proves f ∈ Λα[0, 1]. More-
over,

|fn(x)− fn(y)− [fm(x)− fm(y)]| ≤ ‖fn − fm‖α · |x− y|α

≤ ε · |x− y|α for n,m > Nε

Taking m→∞, we have

|fn(x)− fn(y)− [f(x)− f(y)]| ≤ ε|x− y|α n > Nε

so ‖fn − f‖α ≤ |fn(0)− f(0)|+ ε for n big, this implies ‖fn − f‖α → 0.
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(2) If f ∈ λ1, then it follows from definition of λ1 that f ′ exists and is identically
zero, so f is a constant function. Now if 0 < α < 1, let {fn} ⊂ λα[0, 1] be
a convergent sequence and f be its limit, we show f ∈ λα[0, 1]. For any
y ∈ [0, 1], we have

|f(x)− f(y)|
|x− y|α

≤ ||f − fn|(x)− |f − fn|(y)|
|x− y|α

+
|fn(x)− fn(y)|
|x− y|α

≤ ‖f − fn‖α +
|fn(x)− fn(y)|
|x− y|α

So

lim
x→y

|f(x)− f(y)|
|x− y|α

≤ ‖f − fn‖α → 0.

This proves f ∈ λα[0, 1], hence λα[0, 1] is closed.
�

Problem 6.

Proof. Boundedness of f implies countinuity of f , thus implies closedness of f−1({0}).
Conversely if f−1({0}) is closed, we show f is bounded. Otherwise one can find a
sequence {xn} in X with ‖xn‖ = 1 and 0 < λn = f(xn) → ∞. Moreover since f
cannot be identically zero, we can find y ∈ X\f−1({0}) with f(y) = 1. Now con-
sider the sequence {yn = xn/λn − y}. Notice that f(yn) = f(xn)/λn − f(y) = 0,
so {yn} ⊂ f−1({0}). Meanwhile ‖yn − y‖ = ‖xn/λn‖ = 1/λn → 0, so yn converges
to y. By closedness, y ∈ f−1({0}), but this contradicts f(y) = 1. �

Problem 7.

Proof. Consider the partial ordered set

P = {N closed subspace of X : N ∩M = 0}

whose partial order is the inclusion. P is non-empty since {0} ∈ P, then by Zorn’s
lemma P has a maximal element N . We claim that M+N = X . Otherwise, one
can find a non-zero vector x ∈ X\(M+N ). Define N0 = N +Cx, then N0∩M = 0
and N $ N0.

Moreover, N0 is closed. To see this, let xn = yn + λnx ∈ N0 be a convergent
sequence with limit z ∈ X , where yn ∈ N , λn ∈ C are uniquely determined by xn.
By Hahn-Banach theorem, there is a countinuous function f such that f |N = 0 and
f(x) = 1, then f(xn) = λn converges to f(z) =: λ. Therefore yn = xn − λnx ∈ N
converges to z−λx. Thus by closedness of N , z−λx ∈ N , hence z = (z−λx)+λx ∈
N0. So N0 is closed, thus N0 ∈ P, but this contradicts maximality of N . �

Remark. Notice that we just showed: if N is a closed subspace of a normed vector
space X and x ∈ X\N , then N + Cx is closed. Then by induction one can prove
if M is finite dimensional and M∩N = 0 then M +N is closed. In particular,
every finite dimensional subspace of a normed vector space is closed.

Problem 8.

Proof. Let {fn}n∈N be a countable dense subset in X ∗. For each n choose xn ∈ X
with ‖xn‖ = 1 such that fn(xn) ≥ ‖fn‖/2. We show the countable set of finite
(Q + iQ)-linear combinations of {xn}n∈N is dense in X . By density of Q + iQ in C
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and Hahn-Banach theorem, it suffices to show: if f ∈ X ∗ vanishes on xn for all n,
then f = 0. To prove this, we notice that for all n,

‖fn‖ ≤ 2|f(xn)− fn(xn)| ≤ 2‖f − fn‖‖xn‖ = 2‖f − fn‖,
thus

‖f‖ ≤ ‖f − fn‖+ ‖fn‖ ≤ 3‖f − fn‖.
Since {fn} is dense in X ∗, this shows ‖f‖ = 0,i.e. f = 0. �


