MATH 533, SPRING 2020, HW2

DUE IN CLASS, FEBRUARY 10

Problem 1. Let $K \in C([0,1] \times [0,1])$. For $f \in C([0,1])$ define $Tf(x) = \int_0^1 K(x,y)f(y)dy$. Show that $Tf \in C([0,1])$, and $\{Tf : ||f||_u \le 1\}$ is precompact in C([0,1]).

Problem 2. Let U be an open subset of \mathbb{C} and $\{f_n\}$ a sequence of holomorphic functions on U. If $\{f_n\}$ is uniformly bounded on compact subsets of U, show that there is a subsequence which converges uniformly to a holomorphic function on compact subsets of U.

Problem 3. Let X and Y be compact Hausdorff spaces. Show that the algebra generated by functions of the form f(x,y) = g(x)h(y), where $g \in C(X)$ and $h \in C(Y)$, is dense in $C(X \times Y)$.

Problem 4. Let (X, \mathcal{M}) be a measurable space, and let M(X) be the space of complex measures on (X, \mathcal{M}) . Show that then $\|\mu\| = |\mu|(X)$ is a norm on M(X) which makes M(X) into a Banach space.

Problem 5. If $0 < \alpha \le 1$, let $\Lambda_{\alpha}([0,1])$ be the set of Hölder continuous functions of exponent α on [0,1]. Thus $f \in \Lambda_{\alpha}([0,1])$ iff $||f||_{(\alpha)} < \infty$, where

$$||f||_{(\alpha)} = |f(0)| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

- (1) Show that $\|\cdot\|_{(\alpha)}$ is a norm which makes $\Lambda_{\alpha}([0,1])$ into a Banach space.
- (2) Let $\lambda_{\alpha}([0,1])$ be the set of all $f \in \Lambda_{\alpha}([0,1])$ such that

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \to 0, \quad \text{as } x \to y, \text{ for all } y \in [0, 1].$$

If $\alpha < 1$, show that $\lambda_{\alpha}([0,1])$ is a closed subspace of $\Lambda_{\alpha}([0,1])$, while if $\alpha = 1$, $\lambda_{\alpha}([0,1])$ contains only constant functions.

Problem 6. Show that a linear functional f on a normed vector space \mathcal{X} is bounded iff $f^{-1}(\{0\})$ is closed.

Problem 7. If \mathcal{M} is a finite-dimensional subspace of a normed vector space \mathcal{X} , show that there is a closed subspace \mathcal{N} such that $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N} = \mathcal{X}$.

Problem 8. If \mathcal{X} is a Banach space, and \mathcal{X}^* is separable, show that \mathcal{X} is separable.