$\mathbf{MATH} \ \mathbf{322}, \ \mathbf{SPRING} \ \mathbf{2019} \ \mathbf{MIDTERM} \ \mathbf{2}$

APRIL 17

Solve problems 1 and 2, and two of problems 3-5. Each problem is worth 25 points.

Problem 1. Express in elementary alternating tensors

$$(x_1 + 2x_2 + 3x_3) \wedge (x_1 \wedge x_2 + x_2 \wedge x_3 - 3x_1 \wedge x_3).$$

Solution. We use the distributive property of the wedge product. Since an alternating tensor with repeated index is 0, the wedge product is

$$x_1 \wedge x_2 \wedge x_3 - 6x_2 \wedge x_1 \wedge x_3 + 3x_3 \wedge x_1 \wedge x_2 = 10x_1 \wedge x_2 \wedge x_3.$$

Problem 2. Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $\alpha(x,y) = \begin{pmatrix} x+y \\ x^2+y^2 \\ x^3+y^3 \end{pmatrix}$. Calculate $D\alpha$ and $V(D\alpha)$.

Solution. The derivative is
$$D\alpha(x,y) = \begin{pmatrix} 1 & 1 \\ 2x & 2y \\ 3x^2 & 3y^2 \end{pmatrix}$$
, and hence

$$D\alpha(x,y)^t D\alpha(x,y) = \begin{pmatrix} 1 + 4x^2 + 9x^4 & 1 + 4xy + 9x^2y^2 \\ 1 + 4xy + 9x^2y^2 & 1 + 4y^2 + 9y^4 \end{pmatrix}.$$

Hence,

$$V(D\alpha) = \sqrt{(1+4x^2+9x^4)(1+4y^2+9y^4)-(1+4xy+9x^2y^2)^2}.$$

Problem 3. Let $e_1, ..., e_n, f_1, ..., f_n$ be the standard basis vectors on $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$, and let $x_1, ..., x_n, y_1, ..., y_n$ be the dual basis. Given an alternating form g, define

$$g^{\wedge 1} = g,$$
 $g^{\wedge (i+1)} = g \wedge g^{\wedge i}.$

Let

$$\omega = x_1 \wedge y_1 + x_2 \wedge y_2 + \dots + x_n \wedge y_n.$$

Calculate $\omega^{\wedge n}$. Partial credit will be awarded for calculating small n cases.

Solution. We'll show

$$\omega^{\wedge n} = n! x_1 \wedge y_1 \wedge \cdots \wedge x_n \wedge y_n = (-1)^{\frac{n(n-1)}{2}} n! x_1 \wedge \cdots \wedge x_n \wedge y_1 \wedge \cdots \wedge y_n.$$

The second equality holds since, to sort the altenating tensor into the given order, x_2 passes over one y index, x_3 passes over two, x_4 passes over three, etc, for a total of $1 + 2 + \cdots + (n-1) = \frac{n(n-1)}{2}$ sign changes.

To prove the first equality, write

$$\omega = \sum_{j=1}^{n} x_j \wedge y_j.$$

Hence, by linearity of the wedge product,

$$\omega^{\wedge n} = \sum_{j_1, j_2, \dots, j_n = 1}^n x_{j_1} \wedge y_{j_1} \wedge x_{j_2} \wedge y_{j_2} \wedge \dots \wedge x_{j_n} \wedge y_{j_n}.$$

The wedge product vanishes if there is a repeated index, so those non-vanishing terms have $j_1, ..., j_n$ a permutation of 1, 2, ..., n. To sort such an alternating tensor into the order $x_1 \wedge y_1 \wedge \cdots \wedge x_n \wedge y_n$, an even number of swaps are made, since both x and y terms must be swapped. Hence each permutation obtains a positive term of $x_1 \wedge y_1 \wedge \cdots \wedge x_n \wedge y_n$ for a total of n! terms.

Problem 4. Given a basis $e_1, e_2, ..., e_n$ for \mathbb{R}^n with dual basis $x_1, x_2, ..., x_n$, define the elementary k symmetric tensors by

$$x_{i_1} \vee x_{i_2} \vee \cdots \vee x_{i_k} = \sum_{\sigma \in S_k} (x_{i_1} \otimes x_{i_2} \otimes \cdots \otimes x_{i_k})^{\sigma}.$$

Prove that

$$\{x_{i_1} \lor \cdots \lor x_{i_k} : 1 \le i_1 \le i_2 \le \cdots \le i_k \le n\}$$

form a basis for symmetric k tensors on \mathbb{R}^n , and hence deduce that $\operatorname{sym}^k(\mathbb{R}^n)$ has dimension $\binom{n+k-1}{k}$. (Hint: how does the proof in the case of alternating k tensors change if the tensors are symmetric?)

Solution. Define an operator on k tensors, $S: \mathcal{L}^k(\mathbb{R}^n) \to \mathcal{L}^k(\mathbb{R}^n)$ by

$$Sf = \frac{1}{k!} \sum_{\sigma \in S_k} f^{\sigma}.$$

If f is symmetric, then Sf = f. Also, for any k tensor f, and any $\tau \in S_k$,

$$(Sf)^{\tau} = \left(\frac{1}{k!} \sum_{\sigma \in S_k} f^{\sigma}\right)^{\tau}$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} (f^{\sigma})^{\tau}$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} f^{\tau \circ \sigma} = Sf.$$

Hence, Sf is symmetric. Similarly,

$$S(f^{\tau}) = \frac{1}{k!} \sum_{\sigma \in S_k} (f^{\tau})^{\sigma}$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} f^{\sigma \circ \tau} = S(f).$$

It follows that if $f = x_{i_1} \otimes \cdots \otimes x_{i_k}$ and if $g = x_{i_{\sigma(1)}} \otimes \cdots \otimes x_{i_{\sigma(k)}}$ for some permutation $\sigma \in S_k$, then Sf = Sg.

Let f be a symmetric tensor in S_k , and write

$$f = \sum_{I} b_{I} x_{i_{1}} \otimes \cdots \otimes x_{i_{k}}.$$

Then

$$f = Sf = \sum_{I} b_{I} S(x_{i_1} \otimes \cdots \otimes x_{i_k}).$$

This shows that the elementary symmetric tensors span.

To check that the elementary symmetric tensors are linearly independent, calculate

$$x_{i_1} \vee \dots \vee x_{i_k}(e_{j_1}, \dots, e_{j_k}) = \sum_{\sigma \in S_k} x_{i_1} \otimes \dots \otimes x_{i_k}(e_{j_{\sigma(1)}}, \dots, e_{j_{\sigma(k)}})$$

$$= \begin{cases} n_1! n_2! \dots n_r! & I = J \\ 0 & I \neq J \end{cases}$$

where $n_1, ..., n_r$ are the multiplicities of the indices in I. Hence if

$$f = \sum_{I} b_{I} x_{i_{1}} \vee \dots \vee x_{i_{k}} = 0$$

then

$$0 = f(e_{i_1}, ..., e_{i_k}) = n_1! \cdots n_r! b_J = 0$$

so $b_J = 0$ for all J.

Problem 5. For p > 0 define the ℓ^p norm on \mathbb{R}^n by $\|\underline{x}\|_p^p = x_1^p + \cdots + x_n^p$. Define $B_{n,p}(t) = \{\underline{x} \in \mathbb{R}^n_{>0} : \|\underline{x}\|_p < t\}$. Let $\alpha : B_{n-1,p}(1) \times (0,t)$ be the coordinate patch

$$\alpha(\underline{x},s) = \begin{pmatrix} sx_1 \\ sx_2 \\ \vdots \\ sx_{n-1} \\ s(1-x_1^p - \dots - x_{n-1}^p)^{\frac{1}{p}} \end{pmatrix}.$$

a. Calculate

$$V(D\alpha) = \frac{s^{n-1}}{(1 - x_1^p - \dots - x_{n-1}^p)^{\frac{p-1}{p}}},$$

and, hence,

$$V(B_{n,p}(1)) = \frac{1}{n} \int_{\underline{x} \in B_{n-1,p}(1)} \frac{1}{(1 - x_1^p - \dots - x_{n-1}^p)^{\frac{p-1}{p}}}.$$

b. Determine $V(B_{n,p}(1))$ by calculating $\left(\int_{\mathbb{R}_{>0}} e^{-x^p} dx\right)^n$ in two ways. Express your answer in terms of the Gamma function, which is defined in $\Re(s) > 0$ by

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx.$$

Solution.

a. We calculate, for $d = (1 - x_1^p - \dots - x_{n-1}^p)^{\frac{1}{p}}$,

$$D\alpha(\underline{x},s) = \begin{pmatrix} s & 0 & \cdots & 0 & x_1 \\ 0 & s & \cdots & 0 & x_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & s & x_{n-1} \\ -s\frac{x_1^{p-1}}{d^{p-1}} & -s\frac{x_2^{p-1}}{d^{p-1}} & \cdots & -s\frac{x_{n-1}^{p-1}}{d^{p-1}} & d \end{pmatrix}.$$

Since $D\alpha$ is $n \times n$, $V(D\alpha) = |\det D\alpha|$. In the determinant, pull out a factor of s from each of the first n-1 columns, and a factor of $d^{-(p-1)}$

from the last row, to obtain

$$V(D\alpha(\underline{x},s)) = \frac{s^{n-1}}{(1 - x_1^p - \dots - x_{n-1}^p)^{\frac{p-1}{p}}} \times \left| \det \begin{pmatrix} 1 & 0 & \dots & 0 & x_1 \\ 0 & 1 & \dots & 0 & x_2 \\ \vdots & \ddots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & x_{n-1} \\ -x_1^{p-1} & -x_2^{p-1} & \dots & -x_{n-1}^{p-1} & 1 - x_1^p - \dots - x_{n-1}^p \end{pmatrix} \right|.$$

The latter determinant is 1, since row operations can be performed to clear the last column to the standard basis vector e_n . Using α with $B_{n-1,p}(1) \times (0,1)$ as a coordinate patch for $B_{n,p}(1)$ gives the volume of $B_{n,p}(1)$ as

$$\int_{B_{n-1,p}(1)\times(0,1)} V(d\alpha) = \int_{B_{n-1,p}(1)\times(0,1)} \frac{s^{n-1}}{(1-x_1^p - \dots - x_{n-1}^p)^{\frac{p-1}{p}}}.$$

Applying Fubini's theorem and integrating s from 0 to 1 gives the claimed formula.

b. First substitute $u = x^p$, $du = px^{p-1}dx$ to calculate

$$\int_0^\infty e^{-x^p} dx = \frac{1}{p} \int_0^\infty u^{\frac{1}{p}} e^{-u} \frac{du}{u} = \frac{1}{p} \Gamma\left(\frac{1}{p}\right).$$

It follows that

$$\left(\frac{1}{p}\Gamma\left(\frac{1}{p}\right)\right)^{n} = \left(\int_{0}^{\infty} e^{-x^{p}} dx\right)^{n}$$

$$= \int_{\mathbb{R}^{n}>0} e^{-x_{1}^{p}-\dots-x_{n}^{p}} d\underline{x}$$

$$= \int_{B_{n-1,p}(1)\times(0,\infty)} \frac{s^{n-1}e^{-s^{p}}}{\left(1-x_{1}^{p}-\dots-x_{n-1}^{p}\right)^{\frac{p-1}{p}}}$$

$$= nV(B_{n,p}(1)) \int_{0}^{\infty} s^{n}e^{-s^{p}} \frac{ds}{s}.$$

After the same change of variables as before, the last integral is

$$\frac{1}{p} \int_0^\infty u^{\frac{n}{p}} e^{-u} \frac{du}{u} = \frac{1}{p} \Gamma\left(\frac{n}{p}\right).$$

It follows that

$$\left(\frac{1}{p}\Gamma\left(\frac{1}{p}\right)\right)^n = V(B_{n,p}(1))\frac{n}{p}\Gamma\left(\frac{n}{p}\right).$$

or

$$V(B_{n,p}(1)) = \frac{\left(\frac{1}{p}\Gamma\left(\frac{1}{p}\right)\right)^n}{\frac{n}{p}\Gamma\left(\frac{n}{p}\right)} = \frac{\Gamma\left(1+\frac{1}{p}\right)^n}{\Gamma\left(1+\frac{n}{p}\right)}.$$