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1. (40 points) Here N represents the counting numbers {1, 2, 3, 4, . . .}, Z represents the
integers, Q the rational numbers and R the real numbers.

a. Explain carefully why the equation x+ 5 = 1 has no solution in N.

b. Explain carefully why the equation 3x = 2 has no solution in Z.
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c. Explain carefully why the equation x2 = 7 has no solution in Q.

d. Explain carefully why the least upper bound property (the Completeness Axiom)
guarantees that the equation x2 = 7 has a solution in R.
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2. (15 points) Prove by induction that the sum of the first n odd integers is equal to n2,
i.e. that

1 + 3 + 5 + 7 + · · ·+ (2n− 1) = n2.

3. (15 points) For a pair (x, y) of real numbers, define ||(x, y)|| = |x|+ |y|. Prove carefully
that

||(a+ c, b+ d)|| ≤ ||(a, b)||+ ||(c, d)||.
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4. (15 points) Here sin(x) is the usual sine function. Show that the sequence a1, a2, a3, . . .

defined by an = sin(n)
n

converges, with limit 0.
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5. (15 points) Suppose (sn) is a sequence of positive numbers converging to the limit s.
Prove that the sequence (

√
sn) converges to

√
s. Hint: give separate proofs for s = 0

and s > 0.

END OF EXAMINATION
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