MATH 311, FALL 2020 MIDTERM 2

OCTOBER 28

Each problem is worth 10 points.

2 OCTOBER 28

Problem 1.

- a. Define the Farey fractions of order n.
- b. Given an irrational number ξ , prove that there are infinitely many rationals $\frac{a}{b}$ with $\left|\xi \frac{a}{b}\right| < \frac{1}{b^2}$.

Solution.

- a. The Farey fractions of order n are those reduced fractions $\frac{a}{b}$ with $0 \le \frac{a}{b} \le 1$ and $b \le n$, written in increasing order.
- b. Let ξ lie between consecutive Farey fractions $\frac{a}{b}$ and $\frac{c}{d}$ of level n. If $\xi < \frac{a+c}{b+d}$ then $\xi \frac{a}{b} < \frac{a+c}{b+d} \frac{a}{b} = \frac{1}{b(b+d)} \le \frac{1}{b^2}$. If $\xi > \frac{a+c}{b+d}$ then $\frac{c}{d} \xi \le \frac{c}{d} \frac{a+c}{b+d} = \frac{1}{d(b+d)} \le \frac{1}{d^2}$. Since, by increasing the level of Farey fraction, we can approximate ξ arbitrarily well, there are infinitely many fractions $\frac{a}{b}$ such that $|\frac{a}{b} \xi| < \frac{1}{b^2}$.

Problem 2. Find all rational points of $x^2 + 5y^2 = 6$ by the secant method.

Solution. (1,1) is on the curve. The secant with rational slope m through (1,1) has equation y=m(x-1)+1. This intersects the curve where

$$x^2 + 5(mx - m + 1)^2 - 6 = 0.$$

Dividing by x-1 obtains

$$(5m^2 + 1)x - 5m^2 + 10m + 1 = 0$$

for the equation of the second point of intersection. This point is thus given by

$$\left(\frac{5m^2 - 10m - 1}{5m^2 + 1}, \frac{-5m^2 - 2m + 1}{5m^2 + 1}\right).$$

4 OCTOBER 28

Problem 3.

- a. State the Pigeonhole Principle.
- b. Prove that if α is an irrational number, there is a number $1 \leq j \leq n$ such that $j\alpha$ has distance at most $\frac{1}{n}$ from the nearest integer.

Solution.

- a. If S and T are finite sets with |S| > |T| and $f: S \to T$ then there is $t \in T$ such that $|f^{-1}(t)| > 1$.
- b. Consider $0\alpha, 1\alpha, 2\alpha, ..., n\alpha \mod 1$. Since there are n+1 of these numbers, two fall into one of the intervals

$$\left[0,\frac{1}{n}\right), \left[\frac{1}{n},\frac{2}{n}\right), ..., \left[\frac{n-1}{n},1\right).$$

Say $i\alpha, j\alpha$ fall into the same interval modulo 1 with i < j. Then $(j-i)\alpha$ falls into the interval $\left[-\frac{1}{n}, \frac{1}{n}\right]$ modulo 1, which satisfies the requirements.

Problem 4. Find all integer solutions to the given system.

$$5w + 3x + 2y + z = 9$$
$$w + x + y + z = 2$$
$$2w + 7x + y + 3z = 4.$$

Solution. Make the reductions

The solution is thus

$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8 & -1 & 0 & 0 \\ -7 & 1 & 0 & 0 \\ -18 & 2 & 1 & 0 \\ 17 & -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} t \\ 12 \\ 7 \\ 2 \end{pmatrix} = \begin{pmatrix} -12 + 8t \\ 12 - 7t \\ 31 - 18t \\ -29 + 17t \end{pmatrix}.$$

8 OCTOBER 28