MATH 308, SPRING 2021 PRACTICE MIDTERM 2

MARCH 14

Each problem is worth 10 points.

Problem 1. Solve the systems:
a.

$$
\begin{array}{r}
y^{\prime \prime}-3 x-2 y=0 \\
x^{\prime \prime}-y+2 x=0
\end{array}
$$

b.

$$
\begin{aligned}
& x^{\prime \prime}-y=e^{t} \\
& y^{\prime \prime}+x=0
\end{aligned}
$$

$$
x(0)=y(0)=x^{\prime}(0)=y^{\prime}(0)=0
$$

Solution.

a. We have

$$
\binom{x}{y}^{\prime \prime}=\left(\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y}
$$

The characteristic polynomial of the matrix is $\lambda^{2}-7$ and the eigenvalues are $\pm \sqrt{7}$ with eigenvectors $\binom{1}{2 \pm \sqrt{7}}$. Make the change of variables $\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ 2+\sqrt{7} & 2-\sqrt{7}\end{array}\right)\binom{u}{v}$. Thus

$$
\binom{u}{v}^{\prime \prime}=\left(\begin{array}{cc}
\sqrt{7} & 0 \\
0 & -\sqrt{7}
\end{array}\right)\binom{u}{v}
$$

Thus $u=c_{1} e^{7^{\frac{1}{4}} t}+c_{2} e^{-7^{\frac{1}{4}} t}, v=c_{3} \cos \left(7^{\frac{1}{4}} t\right)+c_{4} \sin \left(7^{\frac{1}{4}} t\right) . x$ and y are found by inverting the linear transformation.
b. A particular solution is given by $\binom{x}{y}_{p}=\binom{\frac{1}{2} e^{t}}{-\frac{1}{2} e^{t}}$. Thus it suffices to solve the homogeneous equation. This can be solved by noting that $x^{\prime \prime}=y$ so $x^{(4)}+x=0$. The characteristic equation $\lambda^{4}+1=0$ has four
roots at $\frac{1}{\sqrt{2}}\left(\epsilon_{1}+\epsilon_{2} i\right)$ where $\epsilon_{1}, \epsilon_{2}= \pm 1$. Thus

$$
\begin{array}{r}
x_{h}=c_{1} e^{\frac{1+i}{\sqrt{2}} t}+c_{2} e^{\frac{1-i}{\sqrt{2}} t}+c_{3} e^{\frac{-1+i}{\sqrt{2}} t}+c_{4} e^{\frac{-1-i}{\sqrt{2}} t} \\
y_{h}=i\left(c_{1} e^{\frac{1+i}{\sqrt{2}} t}-c_{2} e^{\frac{1-i}{\sqrt{2}} t}-c_{3} e^{\frac{-1+i}{\sqrt{2}} t}+c_{4} e^{\frac{-1-i}{\sqrt{2}} t}\right)
\end{array}
$$

and

$$
\binom{x}{y}=\binom{c_{1} e^{\frac{1+i}{\sqrt{2}} t}+c_{2} e^{\frac{1-i}{\sqrt{2}} t}+c_{3} e^{\frac{-1+i}{\sqrt{2}} t}+c_{4} e^{\frac{-1-i}{\sqrt{2}} t}+\frac{1}{2} e^{t}}{i\left(c_{1} e^{\frac{1+i}{\sqrt{2}} t}-c_{2} e^{\frac{1-i}{\sqrt{2}} t}-c_{3} e^{\frac{-1+i}{\sqrt{2}} t}+c_{4} e^{\frac{-1-i}{\sqrt{2}} t}\right)-\frac{1}{2} e^{t}}
$$

The constants $c_{1}, c_{2}, c_{3}, c_{4}$ are obtained by solving the linear system

$$
\begin{aligned}
c_{1}+c_{2}+c_{3}+c_{4} & =-\frac{1}{2} \\
c_{1}-c_{2}-c_{3}+c_{4} & =-\frac{i}{2} \\
c_{1}-i c_{2}+i c_{3}-c_{4} & =-\frac{1}{2} \frac{1-i}{\sqrt{2}} \\
c_{1}+i c_{2}-i c_{3}-c_{4} & =-\frac{i}{2} \frac{1-i}{\sqrt{2}}
\end{aligned}
$$

Problem 2. Solve the system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
1 & 4 \\
0 & 5
\end{array}\right)\binom{x}{y}+\binom{1}{e^{t}} .
$$

Solution. The eigenvalues of the matrix $\left(\begin{array}{ll}1 & 4 \\ 0 & 5\end{array}\right)$ are 1 and 5 with eigenvectors $\binom{1}{0},\binom{1}{1}$. After the change of variables $\binom{x}{y}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\binom{u}{v}$ the differential equation becomes

$$
\binom{u^{\prime}}{v^{\prime}}=\binom{u}{5 v}+\binom{1-e^{t}}{e^{t}} .
$$

This has solution $u=c_{1} e^{t}-t e^{t}-1$ and $v=c_{2} e^{5 t}-\frac{1}{4} e^{t}$.

Problem 3. Solve by Laplace transform

$$
y^{\prime \prime}+y^{\prime}+y=1, \quad y(0)=y^{\prime}(0)=0
$$

Solution. Write $\hat{y}(s)$ for the Laplace transform. Using the initial conditions,

$$
\left(1+s+s^{2}\right) \hat{y}(s)=\frac{1}{s}, \quad \hat{y}(s)=\frac{1}{s\left(1+s+s^{2}\right)}
$$

Thus

$$
\hat{y}(s)=\frac{A}{s}+\frac{B}{s-\frac{-1+i \sqrt{3}}{2}}+\frac{C}{s-\frac{-1-i \sqrt{3}}{2}}
$$

and

$$
\begin{gathered}
y=A+B e^{\frac{-1+i \sqrt{3}}{2} t}+C e^{\frac{-1-i \sqrt{3}}{2} t} \\
1=A\left(1+s+s^{2}\right)+B s\left(s-\frac{-1-i \sqrt{3}}{2}\right)+C s\left(s-\frac{-1+i \sqrt{3}}{2}\right)
\end{gathered}
$$

So

$$
A=1, B=\frac{1}{i \sqrt{3}\left(\frac{-1+i \sqrt{3}}{2}\right)}, C=\frac{1}{-i \sqrt{3}\left(\frac{-1-i \sqrt{3}}{2}\right)} .
$$

Problem 4. Show that the one dimensional equation

$$
x^{\prime}= \begin{cases}\sqrt{x}, & x \geq 0 \tag{1}\\ 0, & x<0\end{cases}
$$

has infinitely many solutions. Why does this not violate the existence and uniqueness theorem?
Solution. The function $f(t)=\left\{\begin{array}{rl}\frac{t^{2}}{4} & t \geq 0 \\ 0 & t<0\end{array}\right.$ has $f^{\prime}(t)=\left\{\begin{array}{cc}\frac{t}{2} & t \geq 0 \\ 0 & t<0\end{array}\right.$. The function $x(t)=f(t-c)$, for any $c \geq 0$ solves the differential equation. This does not violate the existence and uniqueness theorem because the partial derivative of \sqrt{x} does not exist at 0 and is unbounded near it.

Problem 5. Show that if the largest eigenvalue of the $n \times n$ matrix A has size smaller than 1 , then the power series

$$
\log (I+A)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1} A^{k}}{k}
$$

is norm convergent and

$$
\exp (\log (I+A))=I+A
$$

This can be used to show that the exponential map maps a neighborhood of 0 in the Lie algebra of the special linear group one-to-one onto a neighborhood of the identity in the special linear group.

Solution. By the Jordan-Hölder theorem, A is similar to a matrix D which consists of a number of Jordan blocks all at most $n \times n$. Given a Jordan block

$$
J(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & & 0 \\
& & \ddots & \ddots & \vdots \\
0 & 0 & & & \lambda
\end{array}\right)=\lambda I+N
$$

with $|\lambda|<1$ and $N^{\ell}=0$ for some $\ell \leq n$ we have $(\lambda I+N)^{k}=\sum_{j=0}^{k}\binom{k}{j} \lambda^{k-j} N^{j}$. Thus all entries of D^{k} are bounded by $k^{n-1}|\lambda|^{k-n}$. It follows that $\left\|D^{k}\right\|_{2} \leq$ $n k^{n-1} \Lambda^{k-n}$ with $0 \leq \Lambda<1$ the size of the largest eigenvalue. Since $A=$ $C D C^{-1}$ implies $A^{k}=C D^{k} C^{-1}$, it follows that

$$
\left\|A^{k}\right\|_{2} \leq\|C\|_{2}\left\|C^{-1}\right\|_{2} n k^{n-1} \Lambda^{k-n}
$$

The series of norms now converges, so the series of matrices is norm convergent.
Since powers of A commute with norm convergent power series in A, the expression

$$
\exp (\log (I+A))=I+A
$$

follows from the same formal manipulation of power series as the proof for a single variable $|x|<1$ that $\exp (\log (1+x))=1+x$.

Problem 6. Find the equilibria of the system

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{-x\left(x^{2}+y^{2}-1\right)}{-y\left(x^{2}+y^{2}+1\right)}
$$

and discuss their stability.
Solution. Write the equation

$$
\binom{x^{\prime}}{y^{\prime}}=F(x, y) .
$$

Equilibria occur for $F(x, y)=0$, which occur at $(-1,0),(0,0),(1,0)$. We have

$$
F^{\prime}(x, y)=\left(\begin{array}{cc}
1-3 x^{2}-y^{2} & -2 x y \\
-2 x y & -x^{2}-3 y^{2}-1
\end{array}\right) .
$$

At $(0,0)$ one eigenvalue is 1 , the other -1 so the equilibrium is unstable. At $(\pm 1,0)$ both eigenvalues are -2 , so the equilibria are stable.

