MATH 308, SPRING 2021 PRACTICE MIDTERM 2

MARCH 14

Each problem is worth 10 points.

Problem 1. Solve the systems:
a.

$$
\begin{array}{r}
y^{\prime \prime}-3 x-2 y=0 \\
x^{\prime \prime}-y+2 x=0
\end{array}
$$

b.

$$
\begin{aligned}
x^{\prime \prime}-y=e^{t}, \\
y^{\prime \prime}+x=0
\end{aligned}, \quad .
$$

Problem 2. Solve the system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
1 & 4 \\
0 & 5
\end{array}\right)\binom{x}{y}+\binom{1}{e^{t}} .
$$

Problem 3. Solve by Laplace transform

$$
y^{\prime \prime}+y^{\prime}+y=1, \quad y(0)=y^{\prime}(0)=0 .
$$

Problem 4. Show that the one dimensional equation

$$
x^{\prime}= \begin{cases}\sqrt{x}, & x \geq 0 \tag{1}\\ 0, & x<0\end{cases}
$$

has infinitely many solutions. Why does this not violate the existence and uniqueness theorem?

Problem 5. Show that if the largest eigenvalue of the $n \times n$ matrix A has size smaller than 1 , then the power series

$$
\log (I+A)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1} A^{k}}{k}
$$

is norm convergent and

$$
\exp (\log (I+A))=I+A
$$

This can be used to show that the exponential map maps a neighborhood of 0 in the Lie algebra of the special linear group one-to-one onto a neighborhood of the identity in the special linear group.

Problem 6. Find the equilibria of the system

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{-x\left(x^{2}+y^{2}-1\right)}{-y\left(x^{2}+y^{2}+1\right)}
$$

and discuss their stability.

