MATH 308, SPRING 2021 PRACTICE MIDTERM 1

MARCH 3

Each problem is worth 10 points.

Problem 1. Solve the following differential equations.
a. $y^{\prime}=\frac{e^{x}}{y}$.
b. $y^{\prime}+y \sin x=\sin x$
c. $y^{\prime}=3 y, \quad y(0)=-1$.

Solution.

a. The equation is separable, $\int y y^{\prime} d y=\int e^{x} d x$, or $\frac{y^{2}}{2}=e^{x}+c$.
b. The integral of $\sin x$ is $-\cos x$, so the integration factor is $M(x)=$ $e^{-\cos x}$. Let $v=M(x) y$, so $v^{\prime}=e^{-\cos x} \sin x$. Then $v(x)=e^{-\cos x}+c$. It follows that $y(x)=c e^{\cos x}+1$.
c. The equation is integrable, with solution $C e^{3 x}$. The initial condition implies $C=-1$.

Problem 2. Let A be the matrix $\left(\begin{array}{cccc}1 & 1 & -1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1\end{array}\right)$.
a. Find the dimension of the image and the null space of A.
b. Give a basis for the image, kernal and $\mathbb{R}^{4} / \operatorname{ker}(A)$.

Solution.

a. The first three columns are linearly dependent since the upper 3×3 minor is upper triangular. The fourth column is in the span of the first three, so the image is 3 dimensional and the null space is 1 dimensional.
b. A basis for the image is $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)$. A basis for the null space is $\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right)$. A basis for the quotient is obtained by extending the basis for the null space to a basis for \mathbb{R}^{4}. This is satisfied by the first three standard basis vectors.

Problem 3. Calculate the characteristic polynomial of the matrix $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 1\end{array}\right)$ and determine the eigenvalues, eigenvectors, and diagonalize the matrix.
Solution. We have

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 2 & 0 \\
0 & 1-\lambda & 4 \\
0 & 1 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)(3-\lambda)(-1-\lambda) .
\end{aligned}
$$

Thus the eigenvalues are 1,3 and -1 . The eigenvector with eigenvalue 1 is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. The eigenvector of eigenvalue -1 is in the null space of $\left(\begin{array}{lll}2 & 2 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2\end{array}\right)$, and hence is a multiple of $\left(\begin{array}{c}1 \\ -1 \\ \frac{1}{2}\end{array}\right)$. The eigenvector of eigenvalue 3 is in the null space of $\left(\begin{array}{ccc}-2 & 2 & 0 \\ 0 & -2 & 4 \\ 0 & 1 & -2\end{array}\right)$ and hence is a multiple of $\left(\begin{array}{l}1 \\ 1 \\ \frac{1}{2}\end{array}\right)$. Let $C=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right)$. Then

$$
A=C\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right) C^{-1} .
$$

Problem 4. Let $\ell^{2}(\mathbb{N})=\left\{\left(a_{n}\right)_{n=1}^{\infty}: \sum_{n}\left|a_{n}\right|^{2}<\infty\right\}$. Let L and R denote the left and right shift operators on ℓ^{2},

$$
L\left(a_{n}\right)=\left(a_{2}, a_{3}, a_{4}, \ldots\right), \quad R\left(a_{n}\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right) .
$$

Prove that L and R are linear. Are the maps invertible? For each map, calculate a left inverse to the map from the quotient by the null space.

Solution. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences. Then $L\left(x\left(a_{n}\right)+\left(b_{n}\right)\right)=L\left(x a_{1}+\right.$ $\left.b_{1}, x a_{2}+b_{2}, x a_{3}+b_{3}, \ldots\right)=\left(x a_{2}+b_{2}, x a_{3}+b_{3}, \ldots\right)=x L\left(a_{n}\right)+L\left(b_{n}\right)$. The proof for R is similar. Thus both are linear. The map L has $(1,0,0, \ldots)$ in its null space, so is not invertible. If $R\left(a_{n}\right)=0$ then $a_{i}=0$ all i, so R is invertible. We have L is an inverse to R since $L R\left(a_{n}\right)=L\left(0, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)=\left(a_{n}\right)$. If $L\left(a_{n}\right)=0$ then $a_{i}=0$ for $i \geq 2$, and so the null space is the span of $(1,0,0, \ldots)$. The quotient by the null space forgets the first entry. The right shift is now a left inverse.

Problem 5. Let S denote the vector space of trigonometric polynomials, which is the span of the set of functions $\left\{e^{2 \pi i n x}=\cos 2 \pi n x+i \sin 2 \pi n x: n \in\right.$ $\mathbb{Z}\}$.
a. Prove that $\left\{e^{2 \pi i n x}: n \in \mathbb{Z}\right\}$ are linearly independent.
b. Given a trigonometric polynomial $P(x)=\sum_{k=-N}^{N} a_{k} e^{2 \pi i k x}$, define a map M on S by $M f(x)=P(x) f(x)$. Prove that this map is linear.
c. Let V be the subspace of S spanned by $\left\{e^{2 \pi i n x}:|n|>N\right\}$. Calculate the matrix of the map $M: S / V \rightarrow S / V$ given the basis $\left\{e^{2 \pi i n x}:|n| \leq\right.$ $N\}$.

Proof.
a. Let $f(x)=\sum_{|n| \leq N} c_{n} e^{2 \pi i n x}$. Then

$$
\int_{0}^{1} f(x) e^{-2 \pi i m x} d x=\int_{0}^{1} \sum_{|n| \leq N} c_{n} e^{2 \pi i(n-m) x} d x=c_{m}
$$

and hence, if the linear combination is $0, c_{m}=0$ for all m. This proves that the functions $e^{2 \pi i n x}$ are linearly independent.
b. If $f(x)=\sum_{|k| \leq M} b_{k} e^{2 \pi i k x}$ and $g(x)=\sum_{|k| \leq M} c_{k} e^{2 \pi i k x}$ then

$$
\begin{aligned}
M(c f(x)+g(x)) & =\left(\sum_{|n| \leq N} a_{n} e^{2 \pi i n x}\right)\left(\sum_{|k| \leq M}\left(c b_{k}+c_{k}\right) e^{2 \pi i k x}\right) \\
& =\sum_{m=n+k} e^{2 \pi i m x}\left(a_{n}\left(c b_{k}+c_{k}\right)\right) \\
& =c \sum_{m=n+k} e^{2 \pi m x} a_{n} b_{k}+\sum_{m=n+k} e^{2 \pi m x} a_{n} c_{k} \\
& =c M f(x)+M g(x) .
\end{aligned}
$$

c. Put the basis in order $e^{2 \pi i(-N) x}, e^{2 \pi i(-N+1) x}, \ldots, e^{2 \pi i N x}$. We have $M e^{2 \pi i j x}=$ $\sum_{k} a_{k} e^{2 \pi i(j+k) x}$. It follows that the matrix is the band matrix

$$
\left(\begin{array}{cccccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & a_{-N} & 0 & \ldots & 0 \\
a_{1} & a_{0} & a_{-1} & \ldots & a_{-N+1} & a_{-N} & \ldots & 0 \\
a_{2} & a_{1} & a_{0} & \ldots & a_{-N+2} & a_{-N+1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & & \vdots \\
a_{N} & a_{N-1} & a_{N-2} & \ldots & a_{0} & a_{-1} & \ldots & a_{-N} \\
0 & a_{N} & a_{N-1} & \ldots & a_{1} & a_{0} & \ldots & a_{-N+1} \\
\vdots & & \ddots & \ddots & & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{N} & a_{N-1} & \ldots & a_{0}
\end{array}\right) .
$$

Problem 6. Let $V \subset \mathbb{R}^{4}$ be the set $\left\{v \in \mathbb{R}^{4}:\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) \cdot v=0\right\}$. Prove that V is a subspace, determine its dimension, and give a basis.

Solution. The subspace is a null space, so is a subspace. The image is evidently 1 dimensional, so by the rank-nullity theorem, the null space is 3 dimensional. A basis is given by

$$
\left(\begin{array}{c}
2 \\
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
4 \\
0 \\
0 \\
-1
\end{array}\right) .
$$

