MATH 308, SPRING 2021 PRACTICE MIDTERM 1

MARCH 3

Each problem is worth 10 points.

Problem 1. Solve the following differential equations. a. $y^{\prime}=\frac{e^{x}}{y}$.
b. $y^{\prime}+y \sin x=\sin x$
c. $y^{\prime}=3 y, \quad y(0)=-1$.

Problem 2. Let A be the matrix $\left(\begin{array}{cccc}1 & 1 & -1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1\end{array}\right)$.
a. Find the dimension of the image and the null space of A.
b. Give a basis for the image, kernal and $\mathbb{R}^{4} / \operatorname{ker}(A)$.

Problem 3. Calculate the characteristic polynomial of the matrix $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & 1\end{array}\right)$ and determine the eigenvalues, eigenvectors, and diagonalize the matrix.

Problem 4. Let $\ell^{2}(\mathbb{N})=\left\{\left(a_{n}\right)_{n=1}^{\infty}: \sum_{n}\left|a_{n}\right|^{2}<\infty\right\}$. Let L and R denote the left and right shift operators on ℓ^{2},

$$
L\left(a_{n}\right)=\left(a_{2}, a_{3}, a_{4}, \ldots\right), \quad R\left(a_{n}\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right) .
$$

Prove that L and R are linear. Are the maps invertible? For each map, calculate a left inverse to the map from the quotient by the null space.

Problem 5. Let S denote the vector space of trigonometric polynomials, which is the span of the set of functions $\left\{e^{2 \pi i n x}=\cos 2 \pi n x+i \sin 2 \pi n x: n \in\right.$ $\mathbb{Z}\}$.
a. Prove that $\left\{e^{2 \pi i n x}: n \in \mathbb{Z}\right\}$ are linearly independent.
b. Given a trigonometric polynomial $P(x)=\sum_{k=-N}^{N} a_{k} e^{2 \pi i k x}$, define a map M on S by $M f(x)=P(x) f(x)$. Prove that this map is linear.
c. Let V be the subspace of S spanned by $\left\{e^{2 \pi i n x}:|n|>N\right\}$. Calculate the matrix of the map $M: S / V \rightarrow S / V$ given the basis $\left\{e^{2 \pi i n x}:|n| \leq\right.$ $N\}$.

Problem 6. Let $V \subset \mathbb{R}^{4}$ be the set $\left\{v \in \mathbb{R}^{4}:\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) \cdot v=0\right\}$. Prove that V is a subspace, determine its dimension, and give a basis.

