MATH 308, SPRING 2021 MIDTERM 2

MARCH 14

Each problem is worth 10 points.

Problem 1.

a. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$.
b. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{2 t}$.
c. Suppose $m x^{\prime \prime}+k x^{\prime}+h x$ describes the motion of a particle with mass m, force h and friction coefficient k all positive. Find the general solution of motion and explain the concept of critical damping k.

Solution.

a. Since $(D-1)^{3} y=0$ the general solution is $c_{1} t^{2} e^{t}+c_{2} t e^{t}+c_{3} e^{t}$.
b. Guess the particular solution $A e^{2 t}$. It follows $8 A-12 A+6 A-A=1$ so $A=1$. Thus the general solution is

$$
c_{1} t^{2} e^{t}+c_{2} t e^{t}+c_{3} e^{t}+e^{2 t} .
$$

c. The characteristic equation is $m r^{2}+k r+h=0$, which has roots $\frac{-k \pm \sqrt{k^{2}-4 m h}}{2 m}$. When $k^{2}-4 m h \neq 0$ the general solution is

$$
c_{1} e^{\frac{-k+\sqrt{k^{2}-4 m h}}{2 m}} t+c_{2} e^{\frac{-k-\sqrt{k^{2}-4 m h}}{2 m}} t .
$$

Critical damping occurs when $k^{2}=4 m h$, which has solution

$$
c_{1} t e^{-\frac{k}{2 m} t}+c_{2} e^{-\frac{k}{2 m} t}
$$

The other parameters held constant, this gives the most rapid convergence to equilibrium, which explains the term critical damping.

Problem 2. Solve the following ODE by Laplace transform.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cos t, \quad y(0)=1, y^{\prime}(0)=1 .
$$

Solution. Take Laplace transforms

$$
\left(s^{2}+2 s+2\right) \hat{y}(s)-(s+3)=\frac{s}{s^{2}+1},
$$

or

$$
\hat{y}(s)=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+2 s+2\right)}+\frac{s+3}{s^{2}+2 s+2} .
$$

This can be expanded in partial fractions

$$
\begin{aligned}
& \frac{s^{3}+3 s^{2}+2 s+3}{(s-i)(s+i)(s+1+i)(s+1-i)} \\
& =\frac{A}{s-i}+\frac{B}{s+i}+\frac{C}{s+1-i}+\frac{D}{s+1+i},
\end{aligned}
$$

or

$$
\begin{aligned}
& s^{3}+3 s^{2}+2 s+3 \\
& =A(s+i)\left(s^{2}+2 s+2\right)+B(s-i)\left(s^{2}+2 s+2\right) \\
& +C\left(s^{2}+1\right)(s+1+i)+D\left(s^{2}+1\right)(s+1-i)
\end{aligned}
$$

Thus $A=\frac{1-2 i}{10}, B=\frac{1+2 i}{10}, C=\frac{4-7 i}{10}, D=\frac{4+7 i}{10}$. It follows that

$$
y(t)=\frac{1}{5} \cos t+\frac{2}{5} \sin t+\frac{4}{5} e^{-t} \cos t+\frac{7}{5} e^{-t} \sin t .
$$

Problem 3. Show that if the entries in an $n \times n$ matrix $A(t)=\left(a_{i j}(t)\right)$ are differentiable functions of a real variable t, then the derivative of $\operatorname{det}(A(t))$ is computed by differentiating the entries of one row of $A(t)$ at a time and adding the resulting n determinants.

Solution. We have

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) A_{1 \sigma(1)}(t) \ldots A_{n \sigma(n)}(t) .
$$

Using the product rule,

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} A(t) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sum_{j=1}^{n} \frac{\frac{d A_{j \sigma(j)}(t)}{d t}}{A_{j \sigma(j)}(t)} A_{1 \sigma(1)}(t) \ldots A_{n \sigma(n)}(t) \\
& =\sum_{j=1}^{n} \operatorname{det}\left(\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{j}^{\prime}(t) \\
\vdots \\
\alpha_{n}(t)
\end{array}\right)
\end{aligned}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are the rows of A. This proves the claim.

Problem 4. Solve the following systems of ODEs.
a.

$$
\begin{aligned}
x^{\prime \prime}-3 x-2 y^{\prime \prime} & =0, \\
x^{\prime \prime}-y^{\prime \prime}+2 x & =0 .
\end{aligned}
$$

b.

$$
\begin{aligned}
& x^{\prime \prime}-x+y^{\prime}+y=0, \\
& x^{\prime}-x+y^{\prime \prime}+y=0 .
\end{aligned}
$$

Solution.

a. The equation in x solves $x^{\prime \prime}+7 x=0$, or $x=c_{1} \cos (\sqrt{7} t)+c_{2} \sin (\sqrt{7} t)$.

Now $y^{\prime \prime}=2 x-x^{\prime \prime}=-5 c_{1} \cos (\sqrt{7} t)-5 c_{2} \sin (\sqrt{7} t)$ or

$$
y=\frac{5}{7} c_{1} \cos (\sqrt{7} t)+\frac{5}{7} c_{2} \sin (\sqrt{7} t)+c_{3} t+c_{4} .
$$

b. Let $u=x+y, v=x-y$. Then v satisfies $v^{\prime \prime}-v^{\prime}=0$ or $v=c_{1} e^{t}+c_{2}$. We now have

$$
u^{\prime \prime}+u^{\prime}=2 v=2\left(c_{1} e^{t}+c_{2}\right)
$$

or $u=c_{1} e^{t}+2 c_{2} t+c_{3} e^{-t}+c_{4}$.

Problem 5. Write the van der Pol equation $x^{\prime \prime}+\alpha\left(x^{2}-1\right) x^{\prime}+x=0$ as

$$
\begin{aligned}
& x^{\prime}=y, \\
& y^{\prime}=-x-\alpha\left(x^{2}-1\right) y .
\end{aligned}
$$

Find the linearization near $(0,0)$ and discuss the behavior there.
Solution. Write $\binom{x}{y}^{\prime}=F\binom{x}{y}$. Then $F^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -1-2 \alpha x y & -\alpha x^{2}+\alpha\end{array}\right)$. To be at equilibrium, $x=y=0$. Here $F^{\prime}(0,0)=\left(\begin{array}{cc}0 & 1 \\ -1 & \alpha\end{array}\right)$. The eigenvalues are $\frac{\alpha \pm \sqrt{\alpha^{2}-4}}{2}$. If $\alpha>0$ then the real part of at least one eigenvalue is positive so the equilibrium is unstable. If $-2<\alpha<0$ then the real part is negative. If $\alpha \leq-2$ then $|\alpha|>\sqrt{\alpha^{2}-4}$ so the real part of both eigenvalues is negative. In either case the equilibrium is asymptotically stable. When $\alpha=0$ the eigenvalues have 0 real part, so the stability is not determined by the theorem from lecture.

Problem 6. Solve the initial value problem

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\binom{x}{y}+\binom{e^{2 t}}{2 e^{2 t}}, \quad\binom{x(0)}{y(0)}=\binom{-1}{-2} .
$$

Solution. The homogeneous equation has eigenvalues $2 \pm i$ so set $x_{h}=$ $c_{1} e^{2 t} \cos t+c_{2} e^{2 t} \sin t, y_{h}=c_{3} e^{2 t} \cos t+c_{4} e^{2 t} \sin t$. The matrix equation implies $c_{1}=c_{4}, c_{2}=-c_{3}$. This gives the homogeneous equation

$$
\binom{x_{h}}{y_{h}}=\binom{c_{1} e^{2 t} \cos t+c_{2} e^{2 t} \sin t}{-c_{2} e^{2 t} \cos t+c_{1} e^{2 t} \sin t}
$$

We can guess a particular solution $\binom{x_{p}}{y_{p}}=\binom{A e^{2 t}}{B e^{2 t}}$. Then the matrix equation becomes

$$
\binom{2 A}{2 B}=\binom{2 A-B+1}{A+2 B+2}
$$

or $A=-2, B=1$. Thus

$$
\binom{x}{y}=\binom{c_{1} e^{2 t} \cos t+c_{2} e^{2 t} \sin t-2 e^{2 t}}{-c_{2} e^{2 t} \cos t+c_{1} e^{2 t} \sin t+e^{2 t}} .
$$

Plugging in the initial condition $c_{1}=1, c_{2}=3$.

