MATH 308, SPRING 2021 MIDTERM 2

MARCH 14

Each problem is worth 10 points.

Problem 1.

a. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$.
b. Find the general solution of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=e^{2 t}$.
c. Suppose $m x^{\prime \prime}+k x^{\prime}+h x$ describes the motion of a particle with mass m, force h and friction coefficient k all positive. Find the general solution of motion and explain the concept of critical damping k.

Problem 2. Solve the following ODE by Laplace transform.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cos t, \quad y(0)=1, y^{\prime}(0)=1 .
$$

Problem 3. Show that if the entries in an $n \times n$ matrix $A(t)=\left(a_{i j}(t)\right)$ are differentiable functions of a real variable t, then the derivative of $\operatorname{det}(A(t))$ is computed by differentiating the entries of one row of $A(t)$ at a time and adding the resulting n determinants.

Problem 4. Solve the following systems of ODEs.
a.

$$
\begin{array}{r}
x^{\prime \prime}-3 x-2 y^{\prime \prime}=0 \\
x^{\prime \prime}-y^{\prime \prime}+2 x=0
\end{array}
$$

b.

$$
\begin{aligned}
& x^{\prime \prime}-x+y^{\prime}+y=0, \\
& x^{\prime}-x+y^{\prime \prime}+y=0 .
\end{aligned}
$$

Problem 5. Write the van der Pol equation $x^{\prime \prime}+\alpha\left(x^{2}-1\right) x^{\prime}+x=0$ as

$$
\begin{aligned}
& x^{\prime}=y, \\
& y^{\prime}=-x-\alpha\left(x^{2}-1\right) y .
\end{aligned}
$$

Find the linearization near $(0,0)$ and discuss the behavior there.

Problem 6. Solve the initial value problem

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\binom{x}{y}+\binom{e^{2 t}}{2 e^{2 t}}, \quad\binom{x(0)}{y(0)}=\binom{-1}{-2} .
$$

