MATH 308, SPRING 2021 MIDTERM 1

MARCH 3

Each problem is worth 10 points.

Problem 1. Solve the following differential equations. a. $y' = \frac{y}{1+x^2}$.

b.
$$y' + xy = x$$

c.
$$y' = xy$$
, $y(0) = 1$.

Problem 2. Let
$$A = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 1 & 0 & -1 & 2 \\ 2 & 4 & 2 & 8 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$
.

a. Find the dimension of the image and kernel of A.

b. Give a basis for the image and kernel of A and for $\mathbb{R}^4/\ker(A)$.

Problem 3. Let V denote the vector space of binary cubic forms in two variables x, y,

 $V = \{ f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3 : a, b, c, d \in \mathbb{R} \}.$

For a matrix
$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
, and $f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$ let
 $Tf(x, y) = f((x, y)M).$

Calculate the 4×4 matrix of T in the basis $\{x^3, x^2y, xy^2, y^3\}$.

Problem 4. Given the matrix $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$.

a. Calculate the eigenvectors and eigenvalues of A.

b. Find a matrix C such that $A = CDC^{-1}$ where D is diagonal.

c. Calculate A^{1000} .

MARCH 3

Problem 5.

a. Find a general formula for

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^n.$$

b. Using the binomial formula $(a + b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$, find a general formula for $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}^n$.

Problem 6. Let P_3 be the vector space of polynomials in x of degree less than 3. Give P_3 the inner product

$$\langle f,g\rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)g(x)dx.$$

Calculate an orthonormal basis for P_3 .

MARCH 3

MATH 308, SPRING 2021 MIDTERM 1

MARCH 3